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Abstract ⎯ The mixing properties of systems combining 
alternate flows with obstacles are studied by numerical 
methods. Preliminary results show that the layers of high and 
low solute concentration, created by the alternate flow, are 
split into smaller chunks of fluid, due to the obstacles 
inserted in the mixing channel increasing the contact area 
between high and low concentration regions and decreasing 
the critical mixing length. The improvement in the mixing 
process shows that this method is very useful for designing 
mixers in lab-on-a-chip devices. 
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I  INTRODUCTION 
An essential requirement for any practical fully 
integrated lab-on-a-chip device is the ability to mix 
two or more fluids thoroughly and efficiently, i.e., 
in a reasonable amount of time. The microscale 
conditions have distinctive properties due to its 
small dimensions and typically low volume flow 
rate [1]. Rapid mixing becomes a challenging task, 
as due to strictly laminar flow conditions (it is 
generally operated at Reynolds numbers of less 
than 1), turbulent diffusion is absent and the 
mixing must be achieved by molecular diffusion 
(which is a rather slow process, even over short 
distances [2]) or chaotic advection [3,4]. Therefore, 
while small molecules can diffuse significant 
distances during the average residence time in the 
device, large molecules or particles that do not 
diffuse significantly during the same interval, will 
not move appreciably from their original stream 
unless the critical mixing length is small.  
It is possible to improve mixing by using periodic 
flows [5,6], which will create a flow with  layers of 
low and high solute concentration along the mixing 
channel. However, the thickness of these layers 
should be smaller than the half channel width.  
Pressure driving flows have parabolic velocity 
profiles. The parabolic profile contributes to 
mixing since different layers will interpenetrate 
each other allowing mixing by diffusion in the 

transversal direction.  However, the fluid in the 
center of the channel has a small residence time 
and a high local Peclet Number. 
In continuous flow, good mixing can be obtained 
by the split and join technique. However, this 
technique is only efficient if it is possible to turn 
the fluid in a tridimensional way. Splitting without 
rotation is inefficient. 
This work combines alternate flow with the bi-
dimensional split and join technique enhanced by 
obstacles. The function of the alternate flow is to 
create alternate layers of low and high 
concentrations. The function of the obstacles is to 
delay the fluid in the center of the mixing channel 
and to split the layers into smaller chunks that are 
easily mixable. 
 
 

II MIXER DESCRIPTION 
The mixer (Figure 1) has two entries, one for the 
reactant (R) and the other for the sample (S). The 
purpose is to mix a stream R with a stream S. 
Stream R is rich in a reactant R and stream S is rich 
in a sample S. 
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Figure 1. Schematic representation of the mixers studied.  

 
Three versions of the mixer were studied, a version 
without an obstacle (Figure 1a), a version with a 
central obstacle (Figure 1b) and a version with 
three obstacles (Figure 1c). All versions have two 



feed channels (of width W and length Lf), an 
ejector (of width We and length Le), which connects 
to the mixing channel (of width Wm and length Lm).  
The width of the squared obstacle is Wobs. This 
geometry was selected so that symmetrical layers 
could be obtained, even for small frequencies and 
small Reynolds numbers. The width of the feed 
channel was taken as the characteristic dimension. 
The following non-dimensional geometrical 
variables were defined: 
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II.1 NUMERICAL METHOD 
Numerical methods are used to simulate the 
alternate flow, the mixing, and the reaction in a T 
mixer. Alternate flow (Figure 2) is described by the 
following equation: 
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where V0 is the maximum velocity (for β=1.0), St 
is the Strouhal number based on the width of the 
channel (W), φR is the initial phase of the reactant 
stream and φS the initial phase of the sample stream 
and β is a constant. If this constant is highest than 1 
the feed velocities is negative during half of the 
cycle.  
The non-dimensional time, t, is given by: 
 

0t V T W=  (4) 
 
where T is the dimensional time. The Strouhal 
number is given by: 
 

0St fW V=  (5) 
 
where f is the frequency of the alternate flow.  
The problem was solved numerically by a code 
developed in house based on the public available 
library Overture [7]. The study is being comple-
mented by simulation using commercial 
computational fluid dynamics software, FluentTM.  
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Figure 2. Inflow boundary conditions: (a) φR-φS=π; 

(b) φR-φS=π/2; 

 
The developed code solves the Navier-Stokes 
equations and the mass transport equations for each 
component by a finite difference technique. The 
Navier-Stokes equations, in their velocity-pressure 
formulation, are: 
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where x, y and z are the coordinates normalizes by 
W and Eu0 is the Euler number: 
 

0 0 0Eu P Vρ=  (8) 
 
and Re the Reynolds number based on the channel 
width: 
 

0Re V Wρ μ=  (9) 
 
The mass transport equation for each component 
is: 
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where α indicates if the component i is a reactant 
or a product (α=-1 is a reactant, α=1 is a product),  
Pe is the Peclet number: 
 

0eP V W D=  (11) 
 
and Dai is the Damkohler number given by: 
 

0i iDa K W V=  (12) 
 
where Ki is the kinetic constant of reaction i. 



II.2 MIXING QUANTIFICATION 
Mixing of the fluid was measured in vertical lines 
along the mixing channel. Mixing was quantified 
by (see [6]): 
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where Ci is the concentration of each point in the 
vertical line sampled several times during a 
complete cycle, Vxi is the tangential component of 
the local velocity, C  is the concentration of a 
perfectly mixed solution and V  is the average 
velocity. 
 

III DIMENSIONAL ANALYSIS 
 
The local velocity V in a given position of the 
mixer is a function of the coordinates of the point, 
X and Y, the time T, the width of the channel W,   
the feed velocity V0,   the frequency of the alternate 
flow f, the constant β, the initial phase of each 
stream, the fluid transport properties (viscosity, μ, 
and density, ρ) and the geometry of the mixer (G):  
 

1 0( , , , , , , , , , , ,G)R SV f X Y T W V f β φ φ μ ρ= (14)
 
The number of parameters of this relation can be 
significantly reduced by dimensional analysis: 
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The local concentration, C, is influenced by the 
flow field and will depend of the same variables as 
the local velocity. Additionally, the local 
concentration is a function of the feed 
concentration, C0, and the Damkohler number. 
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Since mixing is independent of Y, then 
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For small Reynolds numbers, as the ones in 
microfluidic systems, the flow pattern is 
independent of the Reynolds number. In this case, 
the Schmidt and the Reynolds numbers can be 
grouped. The functional dependence of the mixing 
parameter becomes: 
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For non-reacting flow, mixing is independent of t 
and a function of the position along the mixing 
channel, the phase difference, the Peclet and 
Strouhal numbers and the constant β. 
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IV RESULTS 
IV.1 FLOW AND CONCENTRATION FIELDS 

Flow and concentration fields were determined for 
the three versions of the mixers (see Figure 1) and 
for three operating conditions: 
 
a) Continuous flow; 
b) Alternate flow with φS-φR=π; 
c) Alternate flow with φS-φR=π/2; 
 
Mass transport results are presented in Figure 3. 
Mixing for continuous flow (Figure 3a) is very 
small when compared with mixing for alternate 
flow (Figures 3b to 3f).  
The mixer geometry facilitates the creation of 
layers of fluid of different compositions (Figures 
3c, 3d and 3e). Due to the parabolic flow, the 
layers have a curved interface between each other. 
Mixing is improved due to the increase of the area 
between different layers and Taylor dispersion. 
However, the fluid in the centre of the channel 
doesn’t mix as effectively as the fluid near the wall 
because the residence time and the thickness of the 
layer are larger. 
The introduction of an obstacle in the axis of the 
channel (Figure 3d) contributes to delay the fluid, 
to break the layers into smaller chunks and to 
increase de interfacial area between fluids with 
different composition. This effect is further 
increased by the introduction of two new obstacles 



which break the smaller chunks into smaller ones 
(Figure 3e). Figure 4 shows that, with the 
introduction of obstacles, the mixing index 
increases in the region located downstream of the 
obstacles.  
Comparison between Figure 3b and Figure 3c 
shows that the mixing is more efficient for phase 
difference equal to π. 
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Figure 3. Concentration field for steady state (Re=0.01, 

Pe=100, St=3.33×10-3, wobs=1, we=1 and wm=5): 
(a) continuous flow; (b) alternate flow with φR - φS = π/2 
and β=1.0; (c) alternate flow with φR - φS = π and β=1.0; 

(d) alternate flow with an obstacle and φR - φS = π; 
(e) alternate flow with three obstacles and φR - φS = π and 

β=1.1; (f) alternate flow with an obstacle and 
φR - φS = π and β=1.2; 
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Figure 4. Mixing index along the mixing channel 
(Re=0.01, Pe=100, St=3.33×10-3, wobs=1, we=1. φR - φS = π . 

β=1.2, and wm=5). 

The concentration field in Figures 3c, 3d and 3e is 
asymmetric because the ejector is not completely 
cleaned after each cycle. This problem can be 
partialy solved by alowing negative inflow 
velocities (β>1.0). Comparison between Figures 3d 
and 3f  shows that mixing improves for β>1.0. 
 

V CONCLUSION 
Mixing of two streams in a microfluidic system 
combining alternate flow with obstacles located 
along the mixing channel was studied by numerical 
methods. Preliminary results show that this method 
can improve mixing in a T mixer. In addition, for 
biological fluids analysis using lab-on-a-chip 
devices, this improvement can lead to faster results 
and to low cost mixers fabricated by planar 
lithographic technology. 
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