
 

 

 

  

Abstract— The aim of this study is to compare 2 EEG pattern 

classification methods towards the development of BCI. The 

methods are: (1) discriminant stepwise, and (2) Principal 

Component Analysis (PCA) –Linear Discriminant Analysis (LDA) 

joint method. Both methods use Fisher’s LDA approach, but 

differ in the data dimensionality reduction procedure. Data were 

recorded from 3 male subjects 20-30 years old. Three runs per 

subject took place. The classification methods were tested in 240 

trials per subject after merging all runs for the same subject. The 

mental tasks performed were feet, tongue, left hand and right 

hand movement imagery. In order to avoid previous assumptions 

on preferable channel locations and frequency ranges, 105 (21 

electrodes×5 frequency ranges) electroencephalogram (EEG) 

features were extracted from the data. The best performance for 

each classification method was taken into account. The 

discriminant stepwise method showed better performance than 

the PCA based method. The classification error by the stepwise 

method varied between 31.73% and 38.5% for all subjects 

whereas the error range using the PCA based method was 39.42% 

to 54%. 

I. INTRODUCTION 

rain-Computer Interface (BCI) enables people to 

control a device with their brain signals [1].  BCI is 

expected to be a very useful tool for impaired people both in 

invasive and non-invasive implementations. Because the 

electroencephalogram (EEG) does not have as much accuracy 

as invasive recordings to detect user movement intention from 

primary motor cortex, recent studies have tried to use 2 distinct 

approaches. In the operant conditioning approach, the training 

load is on the subject [1]. The subject must learn to control a 

specific rhythm in order to produce the desired result on the 

device that he is controlling. The pattern recognition approach 

is suitable for less trained subjects. The user is instructed to 

perform distinct mental tasks that should be identified by the 

BCI system [2]. The features selected to discriminate the 

mental tasks are usually based on previous assumptions on 
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frequency ranges and electrode placements commonly used to 

distinguish such mental tasks. 

A discriminant stepwise procedure to discriminate EEG 

spatiotemporal patterns, in response to mental tasks, was 

proposed by the authors in [3]. A stepwise procedure first 

selects the variables with the most discriminant information 

and then canonical functions based on Fisher’s Linear 

Discriminant Analysis (LDA) were used for classification. The 

results in [3] were encouraging, but a comparison test with 

other common pattern classification methods was not 

presented. The objective of this work is to compare the 

proposed method with a common EEG pattern classification 

approach: Principal Component Analysis (PCA) and Linear 

Discriminant Analysis (LDA) jointly. A 4 class classification 

test was done for that purpose. The pattern classification is 

intended to provide the subjects, in further sessions, the ability 

to control a device with a minor training load. Hence, the 

discriminant algorithm generates functions that will predict 

class group membership of observations during feedback 

sessions. The subjects that participated in this study had no 

previous BCI experience. Neither frequency ranges nor 

electrode locations typically used in motor imagery tasks were 

pre-selected. Power ratios for frequency ranges of interest were 

used as features. Because the available variables are likely to 

be much more than is necessary to obtain the best possible 

linear discrimination, data dimensionality was reduced through 

a stepwise [3] in the proposed method or a Principal 

Component Analysis (PCA) procedure in the control method 

[4].  

Three subjects were submitted to 3 sessions each, 

conducting mental tasks about movement imagery. The 

discrimination quality and group prediction error for each 

method was evaluated in all subject datasets.  

II. EXPERIMENTAL DESIGN 

 

Three subjects, 20 to 30 years old, were submitted to 3 

sessions of motor imagery. Each session had 80 trials. Each 

subject was instructed to perform one of 4 tasks in each trial. 

The tasks were tongue, feet, left hand and right hand 

movement imageries. Each trial was 8 s long. After the first 2 s 

a cue warned the subject to be prepared and 1 s later, a cue 
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about the required mental task was presented to the subject. 

The subject should perform the task during the last 4 s. 

A subset of the 32 available electrodes was used for 

classification, due to the presence of noise in some electrode 

signals. Hence, 21 electrodes (F7, F3, Fz, F4, F8, FC5, FC1, 

FC2, FC6, C3, Cz, C4, CP5, CP1, CP2, CP6, P7, P3, Pz, P4 

and P8) according to the standard 10-20 system were used for 

feature extraction. All electrodes were referenced to linked 

earlobes. Data was digitized at 250 Hz and passed through a 6
th

 

order (48 dB per octave) 0.5-30 Hz band-pass Butterworth 

filter. Data were visually inspected for artifacts after amplitude 

threshold and gradient artifact detection was applied. The trials 

that contained artifacts in the 2 to 8 s interval were marked and 

were excluded from the discriminant function analysis. Five 

frequency bins (10 Hz, 14 Hz, 18 Hz, 22 Hz and 26 Hz bin 

central frequencies, 4 Hz width bins) were considered for each 

channel. The data sets were epoched from 1 s before the cue to 

4 s after the cue (5 s length). Each epoch was subdivided in 2 s 

time windows with 1 s overlap (4 time windows). Thus we 

used 4 time windows for classification error evaluation. The 

time window central points are 0 s, 1 s, 2 s and 3 s, with 

respect to the trigger point. The feature matrix of each time 

window is the ratio of the pre-filtered EEG signal power in one 

of these frequency ranges to the power in the broadband 

frequency range 0.5-30 Hz. Since 21 channels and 5 frequency 

bins were selected, 105 variables (features) were available for 

discrimination. 

Two classification error measures were used for the 

comparison of methods. The plug-in error rate (PIR) is the 

ratio of misclassified observations to the total observations 

when the discrimination functions are extracted from all the 

data observations. The leave-one-out error rate (LOOR) is the 

ratio of the misclassified observations to the total observations 

when one observation at a time is left out of the discrimination 

function generation and its group membership is predicted by 

those functions. 

 

III. CLASSIFICATION METHODS 

    

A. Discriminant Stepwise 

A discriminant stepwise method was used to decrease data 

dimensionality [5]. The original feature matrix of each subject 

has 160-220 multivariate observations (observations in rows). 

Each observation is described by 105 variables. Each feature is 

a power ratio of a specific channel (out of the 21 available) for 

one of the frequency ranges mentioned in the previous section. 

This method is based on a multivariate canonical 

discrimination technique that was first developed by Fisher [6] 

in order to quantify the static taxonomic classification of plant 

species. A more robust approach on spatiotemporal EEG 

patterns discrimination [7] was used. 

The discrimination was performed on a feature matrix Y, 

which was previously formatted by the stepwise procedure. 

The canonical discrimination functions Zi are the result of a 

linear transformation of original data Y according (1). The 

discrimination coefficients of each i
th

 canonical discrimination 

function are denoted by the columns of bi
T
 .  

 

 

Covariance matrices of the Y matrix were calculated for the 

whole dataset Ψtotal and within each group Ψwithin. For any linear 

combination Zi the separation between groups implies that the 

Ψbetween in (2) should be emphasized with respect to Ψwithin. 

Upon normality assumption, each multivariate observation 

vector in Y has a transformed vector z with mean u and normal 

p-variate distribution f(z). Prior probabilities πj were 

determined by the ratio of observations in group j to the total 

observations (N). The group membership prediction was based 

on the posterior probability πjz in (3) as the probability that the 

data of a given value z came from group j of n groups. The 

exp[q(z)] , for ( ) 1/2 lnT T

j j j jqz u z u u π= − + , was used as a good 

approximation of πjf(z) [5]. The highest πjz value for j=1,…,4 

was the predicted group membership for posterior calculations. 

 
 Discrimination quality was accessed through 3 different 

tests. A robust method for quality testing is to leave one 

multivariate data point out of the discriminant function 

calculation and then test it for predicted group classification 

given its posterior probability. In order to test the significance 

of discrimination, we used a normal theory method that 

analyses the eigenvalues of the coordinate’s transformation 

matrix [3]. After calculating the log likelihood ratio 

as
1
ln(1 )

m

ii
LLRS N λ

=
= +∑  for m canonical discriminators, where λi 

are their eigenvalues, the Wilks’ statistic was used as 

[ ]expW LLRS N= − . A good discrimination yields large 

eigenvalues and W becomes small. Small eigenvalues and W 

values close to 1 are typical for poor discriminations. W is chi-

square distributed and confidence limits were calculated for 

discrimination significance [5]. Since the W statistic is based 

on the assumption of normal distribution of data variables, 

which may not be the case, a bootstrap method was therefore 

used as an alternative method of testing discrimination quality. 

It randomly permutes the group labeling of each multivariate 

data point and re-tests the goodness of fit [7]. The permutation 

between total within
Ψ = Ψ − Ψ                                      (2) 
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number was limited to 1000. 

Although every variable in the data set has between groups 

discriminative information, the preferred criterion for 

discrimination methods comparison was the LOOR. It gives a 

more robust measure of the real-time performance of our 

classification method. Additionally, a moderate small ratio of 

number of observations to variables can make the classification 

unstable in the case of over-fitting. A trade-off between 

number of variables and W discrimination value must be 

sought. In order to achieve good quality discrimination, we 

seek to optimize which of the 105 variables are best to include 

in the Y matrix.  

 The first step of this method is to select a first variable to 

start with and then add new variables in the order of decreasing 

discrimination ability. The function that best discriminates the 

multivariate data observations for all 105 variables is 

determined. The likelihood between the discriminant function 

and each variable is given by their correlation, also called a 

structure coefficient [8]. From (1), it can be calculated using 

the correlation between each column of Y and the transformed 

observations of Z’s first column. The largest absolute value of 

the correlation indicates the first variable to be selected and its 

observations vector will be the Y at this step. Then 

discrimination functions were determined as well as the 

starting W value. The second variable to be selected is the one 

that jointly with the first one promotes the largest decrease in 

W once new discrimination functions are calculated. 

Iteratively, it adds new variables according to their 

discrimination ability in decreasing order. The LOOR is 

calculated every time one variable is added. Once all variables 

were added into Y by discrimination ability decreasing order, 

the subset of variables that reached the lowest LOOR was 

selected if the discrimination between groups was significant 

by the bootstrap method. Once this procedure was finished, we 

have an optimized variable set and new canonical discriminant 

function available to predict group membership on training 

data as well as test data (feedback sessions).   

B. PCA+LDA 

This method uses PCA as a data dimensionality reduction 

step and then applies LDA on the selected components. The 

objective of PCA is to identify a small number of dimensions 

that provide a succinct and meaningful interpretation of the 

structure underlying the data [4]. The original feature matrix Y 

is composed of all the 160-220 (artifact free) available 

multivariate observations for all the 105 variables. A Singular 

Value Decomposition (SVD) of the Y outputs 3 matrices. U, S 

and V. V is the eigenvector orthogonal matrix. S is a diagonal 

matrix with the eigenvalues. U×S is the component matrix. The 

component matrix is obtained from Y×V, which is the 

projection of the original data over the eigenvectors 

dimensional space. The equality in (4) explains how the 

original data can be generated back from the SVD output 

matrices. 

 
 

Although the components extracted from the SVD (columns 

of U matrix) are already organized by decreasing order of total 

variance accounted for, those may not be the most important 

for population discrimination – indeed this decomposition is 

optimized for orthogonality rather than discrimination between 

groups. In order to try to compensate for this and take the data 

group structure into account, attention must be paid on the 

highest scores that account for across group variance (AGV) 

[4], instead of looking for the scores that account for the total 

variance (eigenvalues in S). 

From (2) and 
2T

Total
V V SΨ =  where the columns of V are 

the component loadings of ΨTotal corresponding to the 

eigenvalues of the diagonal values of S, the total amount of 

information provided by the i
th

 component is given by (5). 

 
The AGV accounted for by the i

th
 component is given by 

 
This AGV measure was used to rank every component. The 

original data in Y were projected over the eigenvectors axes 

corresponding to the components with best AGV ranking. The 

component selection criterion was 99% of the total AGV. The 

time series resulting from Y×V (where the columns of V are 

truncated, keeping the eigenvectors matching the previously 

selected components) was used for LDA discriminant function 

calculation and tested for classification according to the 

previous subsection details. The classification error for group 

membership prediction, using each subject’s selected 

components as predictors, was used for comparison. 

IV. RESULTS 

 

The classification results for method comparison in each 

subject data are presented as PIR and LOOR values for each 

time window. The t-Test for both methods’ classification error 

mean equality (H0 null hypothesis) is presented on Table I. 

PCA and Stepwise methods are the t-Test sample groups and 

their time window classification errors are the observations. 

Each column in Table I have the results of the t-Test for H0 

hypothesis (PIR or LOOR) in a specific subject data. 

Bonferroni corrections were used on confidence intervals 

T
Y U S V= × ×                (4) 

( )T

i i Within Between iv vλ = Ψ + Ψ           (5) 

T

i Between i
i

i

v v
AGV

λ

Ψ
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(α=0.5) of multiple comparisons for the three subjects.   

Although, the null hypothesis probability for PIR error is 

quite significant for 2 out of the 3 subjects (0.003, 0.452 and 

0.115 for EM, FF and JC respectively), the LOOR values are 

significantly different in both methods for all subjects (0.004, 

0.015 and 0.003 respectively).  
Fig. 1 depicts both method classification errors for PIR and 

LOOR measures. The lowest error rates were the PIR with 

11% misclassified observations for EM subject, 11.06% for FF 

subject and 15.67% for JC subject. The lowest LOOR error 

rates were 31.73%, 38.5% and 35.02% for FF, EM and JC 

subjects respectively. 
 

TABLE I 

PAIRED T-TEST FOR EQUALITY OF METHODS’ CLASSIFICATION ERROR MEANS 

EM FF JC EM FF JC

Pearson Correlation 0.57 0.76 0.76 0.54 0.92 0.99

t Stat -8.506401 -0.862011 -2.198467 8.013944 5.028126 8.778204

P(T<=t) two-tail 0.003412 0.452077 0.115337 0.004056 0.015157 0.003114

t Critical two-tail 4.856657 4.856657 4.856657 4.856657 4.856657 4.856657

LOORPIR

 
The hypothesis of classification error (PIR and LOOR) equality for both PCA 

and Stepwise methods was tested with a paired t-Test (tow-tail approach) for 

each subject (EM, FF and JC). Multiple comparison tests were done with 

Bonferroni corrections α=0.05. 
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Fig. 1. (a) Plug-in classification error rates for all the 3 subjects (EM, FF and 

JC) in both PCA and Stepwise Discriminant Analysis at each time window. 

(b) Leave-one-out classification error rates for all the 3 subjects (EM, FF and 

JC) in both PCA and Stepwise Discriminant Analysis at each time window. 

 

V. DISCUSSION AND CONCLUSIONS 

 

PIR has lower values than LOOR in all cases. Additionally, 

the PIR classification showed very similar results for both 

Stepwise and PCA methods. These facts can be due to over-

fitting of the classification algorithms. PIR is more susceptible 

to this effect. Furthermore, the leave-one-out error rates were 

significantly better for the Discriminant Stepwise method than 

for the PCA+LDA method. 

The FF subject achieved lower classification errors than EM 

and JC subjects. Although the best time window for 

classification differed from subject to subject, the classification 

error in the first time window was generally the worst. That is 

supported by the fact that the task order was randomized along 

data recording runs. Hence, the subject had no clue of the task 

to perform during the first 2 s time window. Most of the best 

classification time points for LOOR values were in the 1 s to 3 

s after trigger time window, which is a time period free of 

evoked potentials and gives a reasonable delay for task 

performance initiation. 

The group membership prediction error values presented 

above were intended for classification methods comparison. 

However, the error rates are not low enough as required for 

effective 4 groups BCI online operation. In future work, to 

address this issue, session data recorded with more than one 

EEG cap placement should not be used on discriminant 

functions extraction. Slightly different electrode locations may 

induce data variability. A larger number of electrodes and 

different data filtering other than frequency ratios (e.g. event-

related synchronization) should be considered in order to get a 

lower error rate. A larger subject population should be 

considered to double check the hypothetically better 

performance of the Discriminant Stepwise method than the 

PCA+LDA method.  
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