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Thermoelectric Microconverter for Energy
Harvesting Systems
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Abstract—This paper presents a solution for energy microgen-
eration through energy harvesting by taking advantage of temper-
ature differences that are converted into electrical energy using
the Seebeck effect. A thermoelectric microconverter for energy
scavenging systems that can supply low-power electronics was fab-
ricated using thin films of bismuth and antimony tellurides. Thin
films of n-type bismuth (Bi2Te3) and p-type antimony (Sb2Te3)
tellurides were obtained by thermal coevaporation with thermo-
electric figures of merit (ZT ) at room temperature of 0.84 and
0.5 and power factors (P F × 10−3 [W · K−1 · m−2]) of 4.87 and
2.81, respectively. The films were patterned by photolithography
and wet-etching techniques. The goal for this thermoelectric mi-
croconverter is to supply individual electroencephalogram (EEG)
modules composed by an electrode, processing electronics, and an
antenna, where the power consumption ranges from hundredths
of microwatts to a few milliwatts. Moreover, these wireless EEG
modules allow patients to maintain their mobility while simulta-
neously having their electrical brain activity monitored.

Index Terms—Energy harvesting, microgeneration, renewable
energy sources, thermoelectric energy scavenging systems.

I. INTRODUCTION

CURRENTLY, there is an increased interest in renewable
sources of power, particularly in applications that require

high power levels [1]–[4]. There is also an increasing interest
in ubiquitous electronic devices in everyday life. Moreover,
the complexity and requirements of these devices do not know
limits. The use of batteries cannot be enough to ensure an unin-
terruptible working cycle. Thus, the association of such devices
with the use of some kind of energy-recovering system can
reveal an interesting approach [5]. Energy scavengers are cur-
rently emerging for a number of applications from biomedical
to automotive [4], [6]. Typically, one can distinguish between
two types of energy scavengers, e.g., macroenergy scavengers
that are typically in the cubic-centimeter range and microenergy
scavengers that are typically in the cubic-millimeter range and
manufactured using micromachining techniques. Microenergy
scavengers are small electromechanical devices that harvest
ambient energy and convert it into electricity [7]. Energy scav-
engers could harvest different types of energy. Solar energy
can be harvested and stored by means of photovoltaic solar
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Fig. 1. Artwork of a thermoelectric microsystem. When the heat flows across
the junction, an electrical power current is generated by the Seebeck effect.
Practical thermoelectric generators connect a large number of junctions in series
to increase the operating voltage.

cells with a charge-integrating capacitor for periods of darkness
[8], mechanical energy can be harvested with piezoelectric
or electrostatic converters [9], electromagnetic energy can be
harvested through radio-frequency resonators [10], and, finally,
thermal energy can be harvested with thermoelectric genera-
tors [11].

The majority of microenergy scavengers are still in the
research and development phase. However, thermoelectric was
the first one to appear on the market [7]. This was due to the eas-
iness to fabricate these devices with solid-state technology and
because they are based on a well-established physical theory.
In 1822, Seebeck noticed that the needle of a magnet was de-
flected in the presence of dissimilar metals that were connected
(electrically in series and thermally in parallel) and exposed
to a temperature gradient [11], [12]. The effect observed is
the basis for thermoelectric power generation. As shown in
Fig. 1, if the junctions at the bottom are heated and those
at the top are cooled (producing a temperature differential),
electron/hole pairs will be created at the hot end and absorb heat
in the process. The pairs recombine and reject heat at the cold
edges. A voltage potential, the Seebeck voltage, which drives
the hole/electron flow, is created by the temperature difference
between the hot and cold edges of the thermoelectric elements.
The net voltage appears across the bottom of the thermoelectric
element legs.

The efficiency optimization of these converters needs ther-
moelectric materials that are simultaneously good electric con-
ductors to minimize Joule heating and poor thermal conductors
to retain the heat at the junction, and the Seebeck effect must
be maximized in order to produce the required voltage [13].
A tradeoff exists when a simultaneous optimization of these
three properties is pursued. The simple fact that the electrons
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carry unwanted heat, as well as electric current, will make
the Seebeck effect decrease when the electrical conductivity
increases. The highest performance is obtained in the presence
of heavily doped semiconductors, such as bismuth telluride or
silicon germanium. In the case of semiconductors, the most
desirable situation is when the base materials are both n- and
p-doped in order to apply the same material system on both
sides of the junctions [12]. In addition, so that it will be inte-
grated in silicon microsystems, a thermoelectric generator must
be small in size, must be light in weight, and must have silicon
compatibility. Thin-film generators are the most suited ones for
microsystem applications because they give the advantage of
obtaining modules with minimum size and weight [13].

The integration of efficient solid-state thermoelectric micro-
converters with microelectronics is desirable for local cooling
and thermoelectric microgeneration because they can be used
to stabilize the temperature of devices, decrease noise levels,
and increase operation speed. Moreover, microthermoelectric
generators can be used in a lot of small low-power devices
such as hearing aids or wristwatches. This has been shown by
Seiko and Citizen with their commercialized thermoelectrically
driven low-power wristwatches [14]. Despite the range of excit-
ing applications, only few approaches to manufacture thermo-
electric devices with small dimensions have been reported up to
now [14]–[17].

Due to silicon fabrication compatibility, polycrystalline SiGe
alloys and polycrystalline Si are commonly used in thermopile
applications. Their use in microcoolers has been attempted, but
the performance is very low compared with that of tellurium
compounds, which have been used for many years in conven-
tional large-area cooling devices [18]. Tellurium compounds
(n-type bismuth telluride Bi2Te3 and p-type antimony telluride
Sb2Te3) are well-established room-temperature thermoelectric
materials and are widely employed by the industry in conven-
tional thermoelectric generators and coolers. Different deposi-
tion techniques were tried to obtain thin films of these materials.
Thermal coevaporation, cosputtering, electrochemical deposi-
tion, metal–organic chemical vapor deposition, and flash evap-
oration are some examples. The fabrication of thermoelectric
energy scavenging microsystems with tellurium alloys allows
powering small electronic devices (up to units of milliwatts)
under temperature gradients below 10 ◦C.

The performance of thermoelectric devices depends on the
figure of merit (ZT ) of the material [19], which is given by

ZT =
α2

ρλ
T (1)

where α is the Seebeck coefficient, ρ is the electrical
resistivity, λ is the thermal conductivity, and T is the
temperature.

In this paper, films with high figure of merit were deposited
by coevaporation, and low-cost wet-etching techniques were
used to pattern thermoelectric microconverters. These micro-
converters were used in thermoelectric energy scavenging sys-
tems to work as energy sources for low-powered devices such
as microsensor systems, where a temperature difference exists
between the two surfaces of the microgenerator.

Fig. 2. Fabrication steps of the thermoelectric microconverter.

II. FABRICATION

Two different approaches can be used for on-chip integration
of thermoelectric devices: transversal (cross-plane) and lateral
(in-plane), depending on the direction in which the energy is
removed, relative to the surface of the device. In this paper,
lateral heat flow is addressed due to its easier fabrication
process and compliance with planar technology. Fig. 2 shows
the fabrication process of thermoelectric microconverters. The
p-type Sb2Te3 film is deposited by thermal coevaporation,
followed by a thin layer (100 nm) of nickel (a). The use of
thin layers of nickel helps one to avoid diffusion of the ther-
moelectric material into the next deposited layers. Photoresist
is spun, and p-type elements are patterned by photolithography
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Fig. 3. (a) Coevaporation system. (b) Boats and mass sensors placed inside
the codeposition chamber.

(b)–(c). Nickel is etched in a chromium etchant (Transene
1020), a thermoelectric film is patterned by wet etching in
HNO3:HCl (d), and the photoresist is removed. The n-type
film is then deposited by coevaporation, followed by a 100-nm
nickel layer (e). The photoresist is applied and patterned by
photolithography for n-type element definition (f)–(g). Nickel
is etched in a chromium etchant (Transene 1020), the n-type
film is etched in HNO3 (h), and the photoresist is removed (i).
Contacts are deposited, starting with a 100-nm layer of nickel,
followed by 1 μm of aluminum (j). The photoresist is spun,
and contacts are patterned by photolithography (k). Nickel is
etched in a chromium etchant (Transene 1020), while aluminum
is etched in a standard aluminum etchant (Transene type A).
The photoresist is removed (l). A protective layer of Si3N4 can
also be deposited by low-temperature hot-wire chemical vapor
deposition (HW-CVD) and patterned if required, depending on
the application.

A. Deposition of Thin Films

Thermoelectric films were fabricated by the thermal coevap-
oration technique (Fig. 3) in a high-vacuum chamber (with a
base pressure of ∼1 × 10−6 torr). Two large molybdenum boats
(baffled boxes with a volume of 4 cm3) are used at the same
time, i.e., one for each of the elementary materials required to
produce the desired compound.

The power applied to each boat is controlled indepen-
dently, using two computed proportional–integral–derivative
controllers [20] to maintain the deposition rate at user-defined
constant values, during the deposition process. Two thickness
monitors (quartz crystal oscillators) are carefully placed inside
the chamber in such a way that each of them receives the
material only from the boat that it is monitoring. A metal sheet
is placed between the two boats to prevent the mixing of both
materials at the quartz crystal sensors. Substrates are heated to
the temperature set point (Tsub) in the range of 150 ◦C–270 ◦C.

B. Patterning

Thermoelectric Bi2Te3 and Sb2Te3 thin films (1 μm thick)
were deposited on the Kapton substrate. Transene’s PKP neg-
ative photoresist was applied on the surface, and test struc-
tures were patterned by wet etching in the HNO3 : HCl : H2O

Fig. 4. (Left) Photograph of n- and p-type elements before the deposition of
the top contacts. (Right) Photograph of a thermoelectric microconverter with
eight pairs of thermoelectric elements, fabricated with the bottom contacts.

TABLE I
PROPERTIES OF THE SELECTED SAMPLES OF Bi2Te3 FILMS

TABLE II
PROPERTIES OF THE SELECTED SAMPLES OF Sb2Te3 FILMS

etchant (pure HNO3 and 37% HCl diluted in water). Fig. 4
shows a planar thermoelectric microconverter fabricated on
top of a 25-μm-thick Kapton foil. As shown in that figure,
the contacts can be deposited on the top or bottom of the
thermoelectric films. Because Bi2Te3 and Sb2Te3 adhesion is
higher on polyimide (Kapton) films than that on nickel metal
pads, the use of the top-contact process (as shown in Fig. 2)
avoids the need of depositing additional layers to promote the
adhesion of thermoelectric films.

III. EXPERIMENTAL RESULTS

The in-plane film electrical resistance was measured using
the conventional four-probe van der Pauw method at room
temperature. The thermal conductivity was measured using the
method proposed by Völklein [21]. The values of 1.3 and
1.8 W · m−1 · K−1 were obtained for the Bi2Te3 and Sb2Te3

films, respectively. The measurements of the Seebeck coeffi-
cient were made by connecting one side of the film to a fixed
temperature (heated metal block) and the other side to a heat
sink at room temperature. Tables I and II show the results
of these measurements in the selected samples of Bi2Te3 and
Sb2Te3 films.

In both tables, the first column lists the number of the
selected sample, the second column contains the values of
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Seebeck coefficient α, and the third column has the electrical
resistivity ρ of the films. The fourth column lists the PF for
the selected samples of Bi2Te3 and Sb2Te3, whose values were
calculated using the following:

PF = α2/ρ [W · K−1 · m−2]. (2)

It must be noted that, behind the figure of merit (ZT ), power
factor PF (in watts per kelvin per square meter) is perhaps the
most important value in a thermoelectric converter and gives
the electric power versus the area where the heat flow happens,
plus the temperature gradient between the hot and cold sides.
Moreover, Tables I and II present the corresponding figures of
merit (ZT ), which were calculated from (1).

In-plane electrical resistivity, carrier concentration, and Hall
mobility were measured at room temperature using the con-
ventional four-probe van der Pauw geometry. A dc magnetic
field of 80 mT was applied for Hall measurements. Seebeck
coefficient α was measured by connecting one side of the
film to a heated metal block at a fixed temperature and the
other side to a heat sink kept at room temperature, with a
temperature difference between both sides below 10 ◦C. A
spot of ≈ 5 mm × 5 mm is considered for electrical properties.
Thermal conductivity was measured using the technique devel-
oped in [21]. The measurements made in the selected samples
showed an absolute value of the Seebeck coefficient in the range
of 150–250 μV · K−1 and an in-plane electrical resistivity of
7–15 μΩ · m.

In a conventional thermoelectric element, the effect of elec-
trical contact on the interface with the metal is usually not
taken into consideration, which is acceptable, as the contact
between the two conductors is significantly smaller than the
electrical resistance of the thermoelements [22]. The influence
of electrical contact resistance cannot be disregarded in on-chip
integrated thermoelectric devices due to the size of the contact
relative to the length of the thermoelectric converter [23]. For
comparison, the contact area of a conventional thermoelement
is on the order of 1 × 1 mm2, while that of the integrated
thermoelement is on the order of 10 × 10 μm2 (i.e., an area
reduction of 104). Electrical contacts are made at both the hot
and cold junctions of the device. Because the hot junctions are
considered to be in direct contact with the ambient, the Joule
heat generated in these junctions is absorbed locally and does
not affect the maximum temperature difference. However, the
Joule heat generated due to the electrical contact at the cold
junctions has to travel through the entire length of the device
to reach the ambient [22]. The contact resistance between the
thermoelectric material and the metallic contact was measured
with the help of the transmission-line model method [24]. The
measurements shown for the n- and p-type materials are max-
imum contact resistivities of 2 × 10−7 and 5 × 10−7 Ω · m2,
respectively.

The measurements also shown for the Bi2Te3 and Sb2Te3

films are figures of merit (ZT ) at room temperature of 0.84 and
0.5 and power factors PF × 10−3 [W · K−1 · m−2] of 4.87 and
2.81, respectively.

Using thermoelectric converters for human-body energy har-
vesting requires the generator thermal resistance to be matched

Fig. 5. Open-circuit output voltage and power of a 1-cm2 Bi2Te3–Sb2Te3
thermoelectric generator, plotted as a function of the length of the column.

Fig. 6. Schematic of a simple step-up circuit.

to the human-body and heat-sink thermal loads. The maximum
voltage output is obtained when the thermal resistance of the
thermoelectric legs is equal to the heat-sink and human-body
thermal resistances. A thermal resistance of 200 K · W−1 ·
cm−2 is desirable in the thermoelectric microconverter. Because
each thermoelectric junction of Bi2Te3–Sb2Te3 can deliver an
output voltage of 300 μV · K−1, more than 4000 junctions
are necessary to obtain an output voltage (without load) of
10 V under a temperature difference of 10 ◦C. Fig. 5 shows
the open-circuit voltage and power that can be obtained in a
1-cm2 Bi2Te3–Sb2Te3 thermoelectric generator, when the
length of the columns is up to 10 mm. The maximum power
output is obtained with a column length of 4 mm.

IV. APPLICATIONS

Energy-harvested wireless sensors must be powered in a
peak basis because a temperature gradient could not be present
always; thus, energy must be stored in a capacitor (storage
capacitor) for later use by the electronic system to be powered
[9] or in a rechargeable microbattery of Li-ion type (integrated
in the system) [25]. In both cases, an ultralow power electronics
performs dc–dc rectification with a variable conversion factor.
Fig. 6 shows a simple step-up converter. The step-up conversion
is made with the help of capacitor Cup and inductor Lup. The
current at the output of the thermoelectric microdevice charges
this capacitor, and then, the switch (SW) is systematically
closed and open with a high frequency. However, it remains
closed during a very short time in order to reduce the losses.
In order to meet this requirement, the command signal must
have a very low duty cycle to avoid the overdischarge of
capacitor Cup. When SW opens, the stored energy in inductor
Lup forces capacitor Cup to discharge through diode D, e.g.,
a dc rectification is present. Then, the current charges high-
charge-capacity capacitor Cstore, which further connects to a
dc regulator.
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Fig. 7. Photograph of the CP, followed by the step-up.

Because the target goals for the proposed thermoelectric
microconverter are biomedical applications, a more compact
solution for the power circuit is mandatory. Using discrete but
still compact solution, the first circuit prototype was mounted
to make the step-up conversion [5]. Fig. 7 shows such a circuit,
which is composed by a charge pump (CP), followed by a
dc–dc step-up converter. When the voltage at the output of the
thermoelectric device rises above a certain value (in this circuit,
the chosen voltage was 300 mV), the CP activates an output
pin that will activate the dc–dc step-up circuit. In this situation,
a short circuit is established between the thermoelectric device
and the input of the dc–dc step-up. Then, the step-up puts a
regulated IC-compatible voltage to supply the electronics. The
measurements made in this prototype showed that, when the
voltage at the output of the thermoelectric microdevice crosses
above 300 mV, then the output of CP will enable the step-up,
which will increase the voltage up to 3 V.

A. Wireless EEG as a Biomedical Application

Temperatures ranging from 27 ◦C to 36 ◦C can be found in
different parts of a body. However, higher temperature gradient
in relation to the ambient is found in the forehead and nose.
Standard wireless electroencephalograms (EEGs) use a brain
cap with wires running from the electrode position to a bulky
central unity (amplification, signal filtering, and analog-to-
digital conversion) [26]. A more interesting solution is to use
compact wireless EEG modules, where the electronics, antenna,
and each electrode are mounted together. The power supply of
such modules is obtained locally from the thermoelectric gener-
ator. This solution allows one to integrate additional electronics
(amplification, filtering, and high-resolution digital conversion)
for local signal processing inside these small-size individual
wireless EEG modules.

It is possible to use either bipolar or unipolar electrodes in the
EEG measurement. In the first method, the potential difference
between a pair of electrodes is measured, but an electrode
placed in a reference position is needed for all modules. In the
second method, the potential of each electrode is compared,
either to a neutral (the reference) electrode or to the average
of all electrodes.

Fig. 8 shows the full block diagram of the wireless EEG
module and the thermoelectric module, where the electrode
connected to an amplifier can be seen, followed by an analog-
to-digital converter (ADC). In order to meet the EEG speci-
fications, the amplifier was designed to have enough gain to
amplify signals with amplitudes of only 70 μV. The ADC must
have at least a resolution of 22 b and a minimum sampling
frequency of 2000 Hz.

Plug-and-play wireless EEG modules were previously
demonstrated by the authors [27]. In this paper, a thermoelectric
generator with CP and dc–dc conversion is proposed. Fig. 9
shows an artist impression of the thermoelectric energy scav-
enging system and a wireless EEG module, both attached to a
cap (the zoomed-in part in the figure). The temperature gradient
between the forehead and the environment will generate energy
in the thermoelectric microdevice to supply the modules.

V. CONCLUSION AND FUTURE WORK

This paper has presented a thermoelectric microconverter to
supply low-power electronics, where the power consumption
ranges from hundredths of microwatts to a few milliwatts.
The microconverter is made of thermoelectric structures based
on thin films of n-type bismuth telluride (Bi2Te3) and p-type
antimony telluride (Sb2Te3). The measurements have shown
that the deposited films present thermoelectric properties that
are comparable to those reported for the same materials in
bulk form, as is the case of the materials used in conventional
macroscale Peltier modules. The absolute values of the Seebeck
coefficient are in the 150–250-μV · K−1 range, and the in-
plane electrical resistivity is in the 7–15-μΩ · m range. The
measurements also shown for the Bi2Te3 and Sb2Te3 films are
the figures of merit (ZT ) at room temperature of 0.84 and 0.5
and power factors PF × 10−3 [W · K−1m−2] of 4.87 and 2.81,
respectively. The proposed converter uses the Seebeck effect for
doing the thermoelectric conversion, using microsystem tech-
niques and suitable to be integrated with electronics. The target
applications for this thermoelectric microconverter include the
wireless EEG and use the temperature gradient between the
ambient and the forehead to supply the wireless modules.

Future research will pursue the operation from low-
temperature gradients (a minimum temperature difference of
3 ◦C between the ambient and the thermosource must provide
an IC-compatible voltage). Today, the best commercial thermo-
electric modules (made of Bi, Sb, and Te compounds) have a
ZT of one, despite the many approaches to find compounds
with high performance. In conventional 3-D crystalline sys-
tems, it is difficult to control each of the following interrelated
factors to improve ZT [28]: Seebeck voltage per unit of tem-
perature, electrical conductivity, and thermal conductivity. This
means that an increase of Seebeck voltage per unit temperature
usually results in a decrease of electrical conductivity. More-
over, a decrease of electrical conductivity leads to a decrease
of electronic contribution to thermal conductivity, following
the Wiedemann–Franz law. However, if the dimensionality of
the material is decreased, the new variable of length scale
becomes available for the control of material properties due
to the differences in the density of electronic states. A recent
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Fig. 8. System architecture behind the wireless autonomous EEG system powered by the body heat recovered with the proposed thermoelectric microconverter.

Fig. 9. Sketch of the thermoelectric energy scavenging system with a wireless
EEG module.

work with BiSbTe superlattices demonstrated an enhancement
in ZT to about 2.4 [29] and 1.4 [30]. Thus, thermoelectric
microdevices with high figures of merit, based on superlattices,
are the key to generate power from low-temperature gradients
for biomedical applications.

In future research, both HW-CVD and sputtering deposition
systems will be used to build nanostructured superlattices. Both
techniques allow a reduced substrate temperature, which is
essential to reduce interdiffusion of layers. It is also possible to
deposit amorphous, nanocrystalline, or microcrystalline films.
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