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Abstract: - This paper reports the development of a help-diagnosis system where the physician is required to 

analyze some ECG pulses that can not be accurately classified by the system. A confidence measure is estimated 

on the basis of massive experimental tests on data from MIT-BIH Arrhythmia Database, and was set on a 

threshold above which no classification errors were obtained. Cardiac arrhythmia detection and classification is 

performed by using Wavelets and Hidden Markov Models (HMMs). The types of beat being selected are normal 

(N), premature ventricular contraction (V) which is often precursor of ventricular arrhythmia, two of the most 

common class of supra-ventricular arrhythmia (S), named atrial fibrillation (AF), atrial flutter (AFL), and normal 

rhythm (N). Experimental results are obtained in real data from MIT-BIH Arrhythmia Database and a developed 

Data-Acquisition System. 
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1   Introduction 
Electrical instability of the heart, which can be 

identifiable in the ECG, leads to an abnormal 

synchronized contraction sequence reducing pumping 

efficiency.  This phenomenon named arrhythmia can 

be classified as frequent or infrequent (sporadic). 

Infrequent arrhythmias can be evaluated by long-term 

ambulatory ECG monitoring (Holter), which 

produces a quantity of beats greater than 10
5
. This 

huge quantity of data requires automatic diagnosis 

equipment which allows reducing the time required 

for diagnosis, increasing the quality of life.  

     Atrial fibrillation (AF) is perhaps the most 

common arrhythmia encountered in clinical practice, 

affecting about 0.5-1% of the general population. AF 

is not only related to frequent symptoms and reduced 

quality of life but also constitutes a major risk factor 

for stroke and mortality from cardiovascular and all 

other causes [1]. AF pathology is usually diagnosed 

based on ECG analysis.  

     Normally continuous monitoring over an extended 

period of time is required in order to increase the 

understanding of patient’s cardiac abnormalities. 

Such situations require continuous monitoring by the 

physicians or alternatively the aid of automated 

arrhythmia detection equipment, which can be able to 

identify different types of arrhythmias.  

     This problem of cardiac arrhythmia detection can 

be viewed as a pattern recognition problem, since it is 

possible to identify a finite number of different 

patterns (arrhythmias).  

     HMMs have been successfully applied to pattern 

recognition problems in applications spanning 

automatic speech recognition [2], image 

segmentation [3], ECG modeling [4] and cardiac 

arrhythmia analysis [5]. The most common approach 

regarding HMMs training is finding the stochastic 

distribution that best fits the data. Usually this data is 

derived from the waveform from some type of signal 

processing usually known as feature extraction 

method. Recently advanced signal processing 

techniques as Fourier Transform, Linear Predictive 

Analysis, Lyapunov Functions [6] and Multivariate 

Analysis (MA) have been used in order to feature 

extraction in the HMMs framework. MA allows 

observing the signal at various scales emphasizing 

some hidden particularities not viewed at other 

scales. Wavelet Analysis (WA) is perhaps the most 

common form of MA. Recently WA was been 

successfully combined with HMMs especially 

regarding ECG segmentation [7]. 

     The Wavelet Transform (WT) has the advantage 

over conventional techniques that time/frequency 

representation can be more accurately modeled by 

decomposing the signal in the corresponding scales. 

When the composition level decreases in the time 

domain it increases in the frequency domain 

providing zooming capabilities and instantaneous 

characterization of the signal [8]. 
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     The baseline system is a Bakis or left-to-right 

Continuous Density Hidden Markov Models 

(CDHMMs) with a Gaussian Mixture Model (GMM) 

associated to each model transition. The ECG signal 

is previously sliced in singular pulses by using the 

Pan-Tompkins [9] algorithm and each pulse class is 

modeled by a six state model, modeling the Q-S, S-T, 

T, T-P, P and P-Q events. Experimental results from 

the MIT-BIH Arrhythmia Database using more than 

2000 training pulses and 3400 testing pulses are 

presented. Additionally more than 600 pulses 

acquired by our Data-Acquisition System from 

patients of the Braga Hospital were tested under 

supervision of a Cardiologist.   

 

 

2   Data-Acquisition System 
The developed Data-Acquisition System has two 

components.  The hardware acquisition system is 

based on a custom printed-circuit board with pre-

amplifier, filters and interface for short term Ag/AgCl 

electrodes [10]. Usually, the electrodes position 

follows the vector cardiogram distribution (left and 

right arms and left and right legs). However, 

modified limb lead II (MLII) and modified lead V1 

carry sufficient information regarding automatic 

diagnosis purposes. Figure 1 shows a five leads 

standard Holter. 

 

 

 

 

 

 

 

 

 

 
Fig.1 A five leads standard Holter    

 

The electrical activity of the heart is filtered, 

amplified and converted in a digital signal. A data-

acquisition board, NI 6014, set in differential mode is 

used to control the acquisition hardware and A/D 

conversion. 

     The software for acquisition and filters were 

developed in MATLAB [10]. Afterwards, MLII and 

V1 signal named 300 and 301 were converted in to 

MIT-BIH 212 signal format.     

 

 

3   Wavelets 
The most usual way to sample the time-scale plane is 

on a so-called “dyadic” grid, which means that 

sampled points in the time-scale plane are separated 

by a power of two. This procedure leads to an 

increase in computational efficiency for both WT and 

Inverse Wavelet Transform (IWT). Under this 

constraint the Discrete Wavelet Transform (DWT) is 

defined as                                                           

                                                                            
                                                                           (1) 
 

which means that DWT coefficients are sampled 

from CWT coefficients. A “dyadic” scale is used and 

therefore s0=2 and τ0=1, yielding s=2
j
 and τ=k2

j
 

where  j and k are integers. 

     As the scale represents the level of focus from the 

which the signal is viewed, which is related to the 

frequency range involved, then digital filter banks are 

appropriated to break the signal in different scales 

(bands). If the progression in the scale is “dyadic” the 

signal can be sequentially half-band high-pass and 

low-pass filtered.  

     The output of the high-pass filter represents the 

detail of the signal. The output of the low-pass filter 

represents the approximation of the signal, for each 

decomposition level, and will be decomposed in its 

detail and approximation components at the next 

decomposition level, and the process proceeds 

iteratively in a scheme known as wavelet 

decomposition tree.  After the filtering half of the 

samples can be eliminated according to the Nyquist’s 

rule, since the signal now has only half of the 

frequency. This very practical filtering algorithm 

yields as Fast Wavelet Transform (FWT) and is 

known in the signal processing community as two-

channel subband coder [11]. One important property 

of the DWT is the relationship between the impulse 

responses of the high-pass (g[n]) and low-pass (h[n]) 

filters, which are not independent of each other and 

they are related by  

 

 

         (2) 

 

where L is the filter length in number of points. Since 

the two filters are odd index alternated reversed 

versions of each other they are known as Quadrature 

Mirror Filters (QMF). Perfect reconstruction requires, 

in principle, ideal half-band filtering. Although it is 

not possible to realize ideal filters, under certain 

conditions it is possible to find filters that provide 

perfect reconstruction. The most famous ones were 

developed by Ingrid Daubechies and they are known 

as Daubechies wavelets. In the ambit of this work 

only Daubechies wavelets with 2 vanishing moments 

(db-4) were used.  

     The multiresolution analysis based on the DWT 
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can enhance small differences if the signal is viewed 

at the most appropriate scale.   Figure 2 shows the 

result of the application of the DWT one cycle of a 

normal ECG. From the figure we can observe that d1 

level (frequency ranges of 90-180Hz) emphasize the 

high frequency content of complex QRS when 

compared with P and T waves . D2 and d3 levels 

show clearly that other waves of small frequencies 

not seen at d1 scale are just appearing. 

Fig.2 One ECG pulse viewed at scales d1, d2 and d3. 

     

     The features used in the scope of this work are 

simultaneous observations of d1 and d2 scales, 

therefore the observation sequence generated after the 

parameter extraction is of the form O=(o1, o2, …oT) 

where T is the signal length in number of samples and 

each observation ot is a bi-dimensional vector. Each 

element of the observation vector is derived from the 

IWT of the selected scale. 

 

 

4   Hidden Markov Models 
HMMs are a doubly stochastic process in which the 

observed data are viewed as the result of having 

passed the hidden finite process (state sequence) 

through a function that produces the observed 

(second) process. 

     In the pattern recognition paradigm each class of 

beat is represented by a separate model and after 

decoding, the class for the which the probability 

(likelihood) of occurrence is greater is selected. Since 

the ECG is characterized by a time sequence waves 

occurring almost always in the same order which 

reflects the sequential activity of the cardiac 

conduction system an HMM structure where the 

states are connected in a left-to-right order was 

adopted. In [4] it is shown that a full connected HMM 

is eventually more appropriate for HMM modeling 

since the beat sequence reproduced by this kind of 

HMM is almost perfect. Figure 3 shows the model 

structure adopted for the several pathologies 

considered in the ambit of this paper.  

 

 

 

 

 
Fig.3 A left-to-right HMM with 6 states 

 

     The next issue is the choice of the number of 

Gaussian mixtures. For CDHMMs, it has been found 

that it is more convenient and sometimes preferable 

to use diagonal covariance matrices with several 

mixtures, rather than fewer mixtures with full 

covariance matrices. The reason is the difficulty in 

performing reliable re-estimation of the off diagonal 

components of the covariance matrix from the 

necessarily limited training data. The HMMs in this 

work use five Gaussian mixtures per transition. 

     The output probability density function, which 

defines the conditional likelihood of observing a set 

of features when a transition through the model takes 

place, is usually a multivariate Gaussian mixture for 

the most engineering applications involving HMMs. 

These probability density functions are associated 

with the transitions which configures a CDHMMs 

Mealy machine and are given by 

 

          ),,()/(
1

,,,∑
=

Σ=
C

i

iuiutiut ttt
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Where c is the number of components in the Gaussian 

mixture,  G(…) stands for bi-variate normal 

distribution with mean vector  and covariance matrix 

for the i
th
 mixture component and transition ut given 

respectively by iut ,
µ  and iut ,

Σ . As the components of 

observation vector are assumed iid G(…) function in 

equation (3) is simply the product of five Gaussian 

functions. The mixture coefficients iut
b ,  satisfy, for 

each transition ut , to  

 

                                      ∑
=

=
C

i

iut
b

1

, 1                               (4) 

 

so that, equation (3) is a probability density function. 

     In our experiments the observations were modeled 

by five components in the Gaussian mixture (C=5) in 

order to fit best data with multimodal distributions. 

     The Estimation of HMMs parameters from a set of 

representative training data can be done by using the 

Baum-Welch algorithm which is based on the 

decoding of all the possible state sequence, or 
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alternatively by using the Viterbi algorithm which is 

based on the most likely state sequence [2]. The 

adopted training was the MLE procedure in the 

Viterbi framework, which goal is to maximize 

iteratively the following probability density function. 

The model reestimation formulas can be found in [2]. 

This usual parameter estimation technique maximizes 

iteratively the model parameters that best fit the 

training data. 

 

 

5   Experimental Results 
Experimental results were evaluated by using the 

MIT-BIH Arrhythmia Database. Normal (N) and 

premature ventricular contraction (V) beats, in atrial 

fibrillation (AF), atrial flutter (AFL) and normal (N) 

rhythms were selected. 

     The training set contains the 121, 122, 221 and 

222 records and the testing set contains the 105, 112, 

121, 122, 210, 221 and 222 records of the MIT-BIH 

arrhythmia database, 300 and 301 of the Data-

Acquisition Systems. For the training set 1445 

normal (N) pulses of 121 (N rhythm) and 122 (N 

rhythm), 682 normal and premature ventricular 

contraction (V) pulses of 221 (AF rhythm) and 197 

normal pulses of 222 (AFL rhythm) records were 

used. The testing set contains 3024 pulses of 105, 

112, 121, 122, 300 and 301 records, 1011 pulses of 

210 and 221 records and 246 pulses of 222 record, 

which means that data for training and testing 

purposes was obtained from different patients, which 

is normally known as patient-independent analysis. 

Table 1 shows the HMM based pulse classification 

system using features from wavelets.  

 

Table 1 – The confusion matrix associated DWT 

 

 

 

 

 

 

 

Both MLII and V1 signals were used each one with 

their own HMM. A pulse is considered classified if 

the score from both models agree, otherwise the pulse 

is considered wrong. The row labeled “Total” means 

the total number of beats used in experiment for each 

class listed in the corresponding column. 

     Figure 4 shows a pulse were the confidence 

measure is below the threshold, hence it was select 

for posterior analysis by the physician. This pulse is 

clearly an “A” pulse so not belonging to the 

considered arrhythmia classes. In this case it was well 

selected by insufficient likelihood.   

 

 
 

Fig.4 Selected pulse for posterior analysis by the physician  

 

 

6   Conclusion 
This paper reports a robustness help-diagnosis system 

regarding the cardiac arrhythmia detection by the 

physician. Uncertainty about classification by the 

automatic recognizer is signaled and the physician is 

required to make diagnosis based on medical 

knowledge.     
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 AFN AFV AFLN NN Total Pr+ 

AFN 864 0 0 0 864 1 

AFV 0 114 0 0 114 1 

AFLN 0 0 237 0 237 1 

NN 33 0 9 3024 3066 0.98 

Total 897 114 246 3024 4281  

Sensitivity 0.96 1 0.96 1   
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