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Abstract— Detecting epileptic electroencephalography (EEG) 
signals, both automatically and accurately, is significant in 
ambulatory long-term monitoring patients with epilepsy. In this 
study, it is presented a novel epileptic-like event detection 
algorithm based on a mixture of amplitude, frequency and spatial 
analysis with rule-based decision. In this work, EEG signals from 
6 different subjects were searched for epileptic-like and normal 
data segments. The herein proposed algorithm detects putative 
epileptic EEG channels by comparing the RMS values of EEG 
activity with a hysteresis threshold, on a channel basis. The raw 
EEG signals are filtered with an artefact attenuation technique. 
The threshold is calculated on a reviewer-visually-selected 
baseline epoch, free of artefacts. Generalized epileptic activity 
detection is based on a spatial decision rule. Experimental results 
have shown detection rates as high as 95% with a false-negative 
rate as low as 1%. The algorithm seems to show a promising 
detection performance, even on artefact contaminated datasets. 
The proposed algorithm is intended to be used in real-time 
ambulatory monitoring of epileptic patients and features 
characteristics as subject personalization, small size window 
analysis, good artefact immunity and no need for classifier 
training. 
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II.  INTRODUCTION 
Epilepsy has been described as a brain disorder characterized 
by an enduring predisposition to generate epileptic seizures 
and by the neurobiologic, cognitive, psychological, and social 
consequences of this condition [1]. Over the past decades, 
ambulatory monitoring of epilepsy through 
electroencephalography (EEG) has proven to be a useful cost-
effective tool in the diagnosis of the pathology and certain 
non-epileptic paroxysmal disorders [2, 3]. The EEG recording 
of patients suffering from epilepsy show two categories of 
abnormal activity: inter-ictal, abnormal signals recorded 
between epileptic seizures; and ictal, the activity recorded 
during an epileptic seizure [4]. These two specific epileptic 
events have been well described by literature and its detection 
can be achieved by visual scanning of EEG recordings by an 
experienced neurophysiologist [4, 5]. Epileptic events have 
been described into four major groups: focal ictal patterns; 

focal inter-ictal patterns, generalized ictal patterns and 
generalized inter-ictal patterns. Focal ictal and inter-ictal 
events are more difficult to detect due to their high spatial, 
morphologic and inter-subject variability, these being the 
predominant factors to the poor inter-reviewer agreement [6]. 
Automated epileptic event detection has been studied with 
different approaches. Among the previously reported studies, 
some try to mimic human observers [7], others implement 
amplitude and frequency analysis [6, 8-10], frequency analysis 
with artificial neural networks[11], frequency and amplitude 
analysis through wavelets and machine learning algorithms 
[12, 13], and finally  decisions systems based on rules [14].  
One of the most implemented and commercially used epilepsy 
event detection methods is the Gotman’s algorithm [14]. This 
is based on the decomposition of the EEG into elementary 
waves, and the application of thresholds to the amplitude, 
duration and rhythmicity of EEG signals. 
Despite the fact that all of these studies have achieved good 
detection rates, the application in real-time epilepsy 
monitoring renders in a challenging detection paradigm. 
Real-time epileptic event detection deals with tree major 
difficulties. First, EEG signals can be predominantly 
contaminated with artifacts due to muscle activity, pulse, eyes 
blink and flutter and even electromagnetic interference (EMI) 
[5]. Once artifacts may mislead the detection of the true 
epileptic events, some studies have already devoted their 
attention to the attenuation of artefact in the EEG signals [15-
19]. 
The epoch size of data to be analysed has also been studied. If 
the epoch size is increased in order to get a smoother and less 
variant frequency spectrum, the events detection get delayed 
which might not be compatible online latency restrictions. On 
the other end, if the epoch is too short, the signal features 
might not be sensitive enough to differentiate epileptic-like 
from normal activity. A trade-off between these two scenarios 
must be pursued in order to produce the desired outcome from 
the detection algorithm [2, 3]. 
The high variability between subjects in the expression of the 
epileptic activity is also an event detection problem, and some 



studies have already reported methodologies to individually 
tune an algorithm [20, 21]. 
Finally, an algorithm that requires intensive processing may be 
expensive, in terms of power consumption, to the overall real-
time detection platform. For long-term ambulatory 
monitoring, power consumption is one of the most important 
features [2, 3]. 
Besides the ability to perform online epileptic event detection, 
the devices developed for ambulatory monitoring of epilepsy 
should be wireless and wearable [2, 22]. Some studies have 
already addressed the development of such devices. While 
some developed platforms based on event detection through 
hardware [10], others rely in high-level processing algorithms 
that depend on high computational structures [20, 22-27].  
Considering all of these problematic issues, this study 
describes an algorithm to be used locally in a wireless EEG 
acquisition platform for epilepsy long term monitoring. 

III. DATA 
The classification methodology presented herein was applied 
to the EEG Scalp CHB_MIT database, as described by [28]. 
The complete database consists of 22 subjects from the 
Children's Hospital Boston. The individuals were monitored 
for several days with anti-seizure medication inhibition for a 
better signals characterization. The signals were acquired with 
a sampling frequency of 256 Samples-Per-Second and 16-bit 
resolution. The electrodes are arranged according to the 
standard 10-20, and has 23 bipolar channels with the 
following order: FP1-F7, F7-T7, T7-P7, P7-O1, FP1-F3, F3-
C3, C3-P3, P3-O1, FP2-F4, F4-C4, C4-P4, P4-O2, FP2-F8, 
F8-T8, T8-P8, P8-O2, FZ-CZ, CZ-PZ, P7-T7, T7-FT9, FT9-
FT10, FT10-T8 and T8-P8. 
In this study several data files from 6 randomly selected 
subjects included in the entire database were used. The data 
were registered with two separate events: Normal, and 
Epileptic-like activity. The epileptic-like events (ictal and 
inter-ictal) were marked by visual inspection and included 
generalized inter-ictal and generalized ictal activities. The 
segments that did not show any type of the above described 
seizure events were regarded as normal (Normal). 
For each individual, before the segments being marked with 
Normal or Epileptic-like labels, they were divided in 1 second 
epochs with 256 samples each. This time window was chosen 
as short as possible in order to maximize the real-time 
responsiveness of the detection algorithm. 

IV. METHODS 
The developed algorithm is based on a time-varying amplitude 
analysis with spatial filtering and decision-making based on 
rules. 
The detection algorithm takes into account the described 
morphology, spatial and temporal characteristics of the 
generalized epileptic-like activity regarding the possible 
generated artifacts. 
To design the proposed algorithm, the most important signal 
characteristics that were taken into account were: 

- Epileptic generalized ictal signals are described as 
events that evolve from a low-amplitude and fast-
frequency to an increasing amplitude and decreasing 
frequency that disrupts the baseline activity [5]; 

- The generalized ictal pattern may also progress to an 
epileptiform burst pattern, which commonly 
accompanies clonic activity [5]; 

- Generalized ictal pattern is also identical to 
generalized inter-ictal spike and slow wave complex, 
except that it has a longer duration [6]; 

- Generalized inter-ictal patterns are characterized by 
less morphological variability then focal activity, and 
occur as a complex including a sharply contoured 
wave and a slow wave with a repetition frequency of 3 
to 4 per second [5]. 

- Generalized ictal and inter-ictal patterns are also 
presented in almost all EEG channels on the opposite 
of focal events [5]. 

Despite the clear description of ictal and inter-ictal events, 
they still can be confused with some artifacts. Among all 
possible artifacts, the eyelid movement and flutter can 
simulate an inter-ictal event when the slow wave artifact of 
ocular flutter occurs in combination with faster frequency 
artifact from eyelid movement [5]. Although these specific 
artifact events may occur frequently, they can be distinguished 
from epileptic events because true events usually appear in 
states beyond drowsiness (which is the state for ocular flutter), 
and typically vary more in their amplitude and location [5]. 
Generalized muscular activity is also an artifact that must be 
taken into account because of its amplitude, frequency and 
time evolution which can be judged as belonging to inter-ictal 
activity [5].  
In a clinical environment the subjects will be asked to stay as 
quiet and relaxed as possible to achieve a baseline signal 
segment of 30 seconds. In the data herein analyzed, a segment 
of 30 seconds free from artifacts and epileptic-like activity of 
the EEG files provided, was employed as baseline (Fig. 1).  
 

 
 

Fig. 1: Flowchart of the epileptic event detection algorithm. 



This baseline is the basis of personalization for each subject 
and allows a specific combination for each subject/acquisition 
system.  
After that the proposed algorithm applies a well documented 
muscular artifact attenuation based on the blind source 
separation-canonical correlation analysis technique (BSS-
CCA) [29]. This technique has shown previously good results 
in epileptic EEG signals [30].  
For BSS-CCA application, the MatlabTM Automatic Artifact 
Removal Toolbox (AAR) [31] and EEGLAB [32] were used 
and configured to 1 second window length, 1 second shift 
between correlative window, the sampling frequency set to 
256 Hz and used the emg_psd criterion set to 10. This criterion 
considers to be EMG the components having 10 times (the 
established value) more average power spectrum than in the 
EEG spectrum.  
After the BSS-CCA application, the algorithm calculates the 
root mean squared (RMS) value according to equation (1) in a 
sliding window of 128 points, in each channel.  
RMS is a statistical measure of the magnitude of a varying 
quantity. The use of this measure has already been reported as 
the most effective feature to be used in an epileptic event 
detection algorithm [33]. RMS takes into account amplitude, 
in frequency and time domains as it reflects the DC, and AC 
components of a signal in a specific time window [34].  
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The RMS window length was chosen to be 128 points long 
due to the fact that inter-ictal patterns show increased 
amplitude waves that repeat in a frequency of 3 to 4 cycles per 
second. The used dataset has a sampling frequency of 256 Hz 
thus, a RMS window length of 0.5 seconds was employed. 

Then a moving average filter was also applied on each 
channel, again with 128 points regarding the same aspects of 
RMS. This filter was applied to decrease the RMS waves 
variability, in order to get more regular signals. 
After these calculations for all epochs, the maximum RMS 
filtered value in the initially chosen 10 second baseline 
window between all channels determines the threshold for 
epileptic event detection. 
To increase sensitivity it was applied a hysteresis of about ±10 
µV. Tests were carried out on different threshold values in 
order to achieve the best detection rates. This pilot study was 
applied to 2 subject’s signals that were not taken into account 
on final results. 
Because eyelid may be detected above the threshold, the 
algorithm ignores 4 channels (FP1-F7, Fp1-F3, Fp2-F4, Fp2-
F8) in respect to vertical and horizontal eye movements. 
Then the RMS amplitude filtered on each channel is analyzed 
point-by-point in comparison to the established threshold and 
each epoch is marked as epileptic-like or normal candidate. 
Once the filtered RMS surpasses the hysteresis threshold, that 
epoch from that channel is considered an epileptic-like 
candidate. 
After this, if in a certain time instant at least half the channels 
are epileptic-like candidates, that epoch is considered as an 
epileptic event. 

I. RESULTS 
The presented algorithm was applied to 3 hour-segments of 6 
subjects. 
In Fig. 2, the application of the algorithm and the comparison 
between an inter-ictal event and an eye blink artifact can be 
observed. The two events differ spatially, as well as in 
amplitude and frequency. 

 
Fig. 2: 10 channel demonstration of algorithm application. The blink artifact data points only surpass the threshold in 4 channels (3 of them discarded from 

analysis) while in inter-ictal event all channels surpass the threshold. 



 
It was analyzed an overall of 18 hours EEG, with an average 
false positive detection rate of 5.0%, a false negative rate of 
0.8% and 5.7% total detection error rate. 
The final results are shown in Table I with the individual and 
overall percentages. 

TABLE I.  OVERALL DETECTION RESULTS 

Subject False 
Positive 

False 
Negative 

Detection 
Error 

Threshold 
(µV) 

Total 
Number 
of epochs 

1 7,1% 0,3% 7,4% 33,8 10800 
2 4,8% 0,7% 5,5% 35,4 10800 
3 6,3% 1,9% 8,2% 20,5 10800 
4 4,0% 0,4% 4,4% 68,2 10800 
5 4,3% 1,0% 5,3% 40,7 10800 
6 3,4% 0,2% 3,6% 72,3 10800 
Average 5,0% 0,8% 5,7% 45,2 10800 

 
On Table II, the misdetection rates for both ictal and inter-ictal 
events identified on 1-hour data segments of the same subjects 
are presented. 

TABLE II.  ICTAL AND INTER-ICTAL DETECTION 

Subject Ictal 
epochs 

Ictal 
undetected 

epochs  

Inter-
Ictal 

epochs 

Inter-ictal 
undetected 

epochs 

Total 
Number 
of epochs 

1 40 0 1394 9 (0.6%) 3600 
2 82 0 293 11 (3.8%) 3600 
3 52 0 1252 15 (1.2%) 3600 
4 115 0 1792 7 (0.4%) 3600 
5 171 0 419 18 (4.3%) 3600 
6 22 0 259 16 (6.2%) 3600 

 
II. DISCUSSION AND CONCLUSION 

The proposed algorithm achieved a good performance with 
reduced rates of false positives and false negatives. 
The false positive percentage is overdue to generalized 
muscular activity that was not totally inhibited by BSS-CCA 
method, some eyelid movements, intense alfa rhythm 
experienced in some subjects and some focal inter-ictal 
patterns. 
The good performance results in ictal activity detection, agrees 
with the description of these events that evolve from a low-
amplitude-high-frequency to high-amplitude low-frequency in 
a long lasting time [5]. These two characteristics had an 
increased impact in RMS that lead to their detection through 
the established threshold. 
Although ictal activity detection provided excellent results, the 
main difficulties are faced on generalizing inter-ictal pattern 
detection to several subjects. Frequently, generalized inter-
ictal activity presents the same characteristics of generalized 
ictal pattern but with shorter periods [6]. The established 
threshold was tuned to achieve very high sensitivity in respect 
to the time characteristics of inter-ictal patterns. An 
established rule was that if in a certain time point, the signal 
surpasses the threshold, it was considered as an epileptic-like 
candidate channel on that specific epoch. Due to the 
threshold’s high sensitivity to achieve the best performance in 

inter-ictal event detection, sometimes false-positive detections 
(specially muscular and eyelid movement artifacts that can 
increase RMS in a short time) were generated.  
Two subjects presented high levels of alfa rhythm in a wide 
extension of the signals. Regarding the already described 
characteristics of the threshold, an intense alfa rhythm has also 
generated some false positives. Alfa rhythm is normally 
associated with drowsiness and pre-sleeping states. Because 
the presented algorithm is not intended to be used in epilepsy 
sleeping studies, the alfa rhythm detection will probably not 
be a future problem. 
Some false positives were also generated due to focal inter-
ictal activity. One of the basic principles of this algorithm is to 
detect generalized epileptic-like activity. Focal inter-ictal 
activity can be expressed in many and different ways. These 
events are the hardest to detect and are usually restricted to a 
specific group of channels [5]. While focal epileptic-like 
activity was not the goal of this algorithm, it can be tuned to 
give a higher weight to a specific set of channels. 
Although the developed algorithm doesn’t directly analyse 
frequency features as in Gotham’s algorithm, it must be taken 
into account that the signals frequency variation influence 
directly the RMS value. Gotham’s algorithm applies 
amplitude thresholds to identify possible event-related epochs, 
and then analyses frequency features in a 2 seconds window 
(minimum length) [14]. On the other end, the proposed 
algorithm does not analyse the power spectrum of an event-
related candidate epoch. The foundation rules that were taken 
into account say that generalized ictal and inter-ictal patterns 
increase the amplitude and decrease the frequency of the 
background activity [5]. These two changes in the signals 
promote an increase in RMS that surpasses the established 
threshold and thereby mark that epoch as epileptic-like 
candidate. Because this algorithm is intended to be used on an 
ambulatory scenario with a minimum detection delay 
requirement, a 1 second window was chosen. Epileptic-like 
pattern characteristic frequency features are harder to detect 
on short epochs (1 second) than on larger windows such as 
those employed in Gothman’s (2 to 10 seconds) [14].In order 
to clearly distinguish the power spectra from epileptic-like and 
normal signals, the window length to analyse must be wide 
enough [34]. This reason leads some studies to analyse only 
the ictal events, because of the long lasting feature of these 
pattern [4, 7, 11, 13, 20, 26, 35-37].Once this algorithm 
analyses a small time window, it does not discriminate ictal 
from inter-ictal events in epileptic-like patterns.  
Artifacts are the biggest generators of false-positives in a 
detection scenario [4]. Because artifacts can simulate some 
epileptic-like activity features, the algorithms must be 
sensitive enough to select the artefact-free epileptic-related 
activity. By eliminating artifacts, the problem of 
distinguishing epileptic-like from normal activity is greatly 
reduced. 
If an algorithm ignores the artifacts and uses a long time 
window to analyse the signals, it is usually not intended to be 
used on ambulatory and real-time scenarios. 



Considering these constraints, the ability to perform detection 
without classifier training and personalization, the herein 
proposed algorithm can be characterized as a simple and 
promising method for epileptic activity detection to be used in 
ambulatory monitoring of epileptic patients. 
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