
  

  

Abstract— This article is concerned with the classification of 

ECG pulses by using state of the art Continuous Density 

Hidden Markov Models (CDHMM’s). The ECG signal is 

simultaneously observed at three different level of focus by 

means of the Wavelet Transform (WT). The types of beat being 

selected are normal (N), premature ventricular contraction (V) 

which is often precursor of ventricular arrhythmia, two of the 

most common class of supra-ventricular arrhythmia (S), named 

atrial fibrillation (AF), atrial flutter (AFL), and normal rhythm 

(N). Both MLII and V1 derivations are used. Run time 

classification errors can be detected at the decoding stage if the 

classification of each derivation is different. These pulses are 

selected for a posterior physician analysis. Experimental results 

were obtained in real data from MIT-BIH Arrhythmia 

Database and also in data acquired from a developed low-cost 

Data-Acquisition System. 

I.  INTRODUCTION 

The analysis of the electrocardiogram as a diagnostic tool 

is a relatively old field and it is therefore often assumed that 

the ECG is a simple signal that has been fully explored. 

However, there remain difficult problems in this field that 

are being incrementally solved with advances in techniques 

from the fields of filtering, pattern recognition, and 

classification, together with the leaps in computational 

power and memory capacity that have occurred over the last 

couple of decades [1].  

Electrical instability of the heart, which can be 

identifiable in the ECG, leads to an abnormal synchronized 

contraction sequence reducing pumping efficiency. This 

phenomenon named arrhythmia can be classified as frequent 

or infrequent (sporadic). Infrequent arrhythmias can be 

evaluated by long-term ambulatory ECG monitoring 

(Holter), which produces a quantity of beats greater than 105. 

This huge quantity of data requires automatic diagnosis 

equipment which allows reducing the time required for 

diagnosis, increasing the quality of life.  

Atrial fibrillation (AF) is perhaps the most common 

arrhythmia encountered in clinical practice, affecting about 
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0.5-1% of the general population. AF is not only related to 

frequent symptoms and reduced quality of life but also 

constitutes a major risk factor for stroke and mortality from 

cardiovascular and all other causes [2]. AF pathology is 

usually diagnosed based on ECG analysis.  

Normally continuous monitoring over an extended period 

of time is required in order to increase the understanding of 

patient’s cardiac abnormalities. Such situations require 

continuous monitoring by the physicians or alternatively the 

aid of automated arrhythmia detection equipment, which can 

be able to identify different types of arrhythmias.  

This problem of cardiac arrhythmia detection can be 

viewed as a pattern recognition problem, since it is possible 

to identify a finite number of different patterns 

(arrhythmias).  

HMMs have been successfully applied to pattern 

recognition problems in applications spanning automatic 

speech recognition [3], image segmentation [4], ECG 

modeling [5] and cardiac arrhythmia analysis [6]. The most 

common approach regarding HMMs training is finding the 

stochastic distribution that best fits the data. Usually this 

data is derived from the waveform from some type of signal 

processing usually known as feature extraction method. 

Recently advanced signal processing techniques as Fourier 

Transform, Linear Predictive Analysis, Lyapunov Functions 

[7] and Multivariate Analysis (MA) have been used in order 

to feature extraction in the HMMs framework. MA allows 

observing the signal at various scales emphasizing some 

hidden particularities not viewed at other scales. Wavelet 

Analysis (WA) is perhaps the most common form of MA. 

Recently WA was been successfully combined with HMMs 

especially regarding ECG segmentation [8].  

The Wavelet Transform (WT) has the advantage over 

conventional techniques that time/frequency representation 

can be more accurately modeled by decomposing the signal 

in the corresponding scales. When the composition level 

decreases in the time domain it increases in the frequency 

domain providing zooming capabilities and instantaneous 

characterization of the signal [9, 13].  

The baseline system is a Bakis or left-to-right Continuous 

Density Hidden Markov Models (CDHMMs) with a 

Gaussian Mixture Model (GMM) associated to each model 

state transition. The ECG signal is previously sliced in 

singular pulses by using the Pan-Tompkins [10] algorithm 

and each pulse class is modeled by a six state model, 

modeling the Q-S, S-T, T, T-P, P and P-Q events. 

Experimental results from the MIT-BIH Arrhythmia 

Database using more than 2000 training pulses and 3400 

testing pulses are presented. Additionally more than 600 

pulses acquired by our Data-Acquisition System from 
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patients of the Braga Hospital were tested under supervision 

of a Cardiologist.  

II. DATA-ACQUISITION SYSTEM 

In order to assist our medical staff in the diagnosis of their 

patients a Data-Acquisition System which layout is show in 

figure 1 was developed. The hardware consists of a printed 

circuit board (PCB), including signal conditioning, filtering 

and amplification.  

 

               
 

Figure 1 Block diagram of the developed Data-acquisition System 

 

Modified limb lead II (MLII) and modified lead V1 carry 

sufficient information regarding automatic diagnosis 

purposes since the electrodes position follows the five leads 

standard Holter. The electrical activity of the heart is 

filtered, amplified and converted into a digital signal. A 

data-acquisition board, NI USB – 6210, set in differential 

mode was used to control the acquisition hardware and A/D 

conversion.  

Both the software for acquisition and monitoring were 

developed in MATLAB. A database (DB) for storing the 

signals for future analysis was also developed. For each 

acquired signal, a new file is created in the DB with all 

obligatory parameters filled as described in [11]. Afterwards, 

MLII and V1 signal named 300 and 301 were converted in 

to MIT-BIH 212 signal format. 

III. WAVELETS ANALYSIS OF ECG 

The wavelet transform (WT) is a signal representation in a 

scale-time space, where each scale represents a focus level 

of the signal and therefore can be seen as a result of a band-

pass filtering.  

The most usual way to sample the time-scale plane is on a 

so-called “dyadic” grid, which means that sampled points in 

the time-scale plane are separated by a power of two.  

As the scale represents the level of focus from the which 

the signal is viewed, which is related to the frequency range 

involved, then digital filter banks are appropriated to break 

the signal in different scales (bands). If the progression in 

the scale is “dyadic” the signal can be sequentially half-band 

high-pass and low-pass filtered.  

The output of the high-pass filter represents the detail of 

the signal. The output of the low-pass filter represents the 

approximation of the signal, for each decomposition level, 

and will be decomposed in its detail and approximation 

components at the next decomposition level, and the process 

proceeds iteratively in a scheme known as wavelet 

decomposition tree, which is shown in figure 2. After the 

filtering half of the samples can be eliminated according to 

the Nyquist’s rule, since the signal now has only half of the 

frequency. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2 Wavelet decomposition tree 

 

This very practical filtering algorithm yields as Fast 

Wavelet Transform (FWT) and is known in the signal 

processing community as two-channel subband coder [12].  

One important property of the Discrete Wavelet 

Transform (DWT) is the relationship between the impulse 

responses of the high-pass (g[n]) and low-pass (h[n]) filters, 

which are not independent of each other and they are related 

by 

 (1)

 

where L is the filter length in number of points. Since the 

two filters are odd index alternated reversed versions of each 

other they are known as Quadrature Mirror Filters (QMF). 

Perfect reconstruction requires, in principle, ideal half-band 

filtering. Although it is not possible to realize ideal filters, 

under certain conditions it is possible to find filters that 

provide perfect reconstruction. The most famous ones were 

developed by Ingrid Daubechies and they are known as 

Daubechies wavelets. In the ambit of this work only the tree 

least scales of Daubechies wavelets with 2 vanishing 

moments (db-4) were used. 

The multiresolution analysis based on the DWT can 

enhance small differences when the signal is simultaneously 

observed at the most appropriate scales.   Figure 3 shows the 

result of the application of the DWT one cycle of a normal 

ECG.  
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Figure 3 One ECG pulse viewed at scales d1, d2 and d3 

 

From the figure we can observe that d1 level (frequency 

ranges of 90-180Hz) emphasize the high frequency content 

of complex QRS when compared with P and T waves. D2 

and d3 levels show clearly that other waves of small 

frequencies not seen at d1 scale are just appearing. 

The features used in the scope of this work are 

simultaneous observations of d1, d2 and d3 scales, therefore 

the observation sequence generated after the parameter 

extraction is of the form O=(o1, o2, …oT) where T is the 

signal length in number of samples and each observation ot 

is a tri-dimensional vector. Each element of the observation 

vector is derived from the Inverse Wavelet Transform (IWT) 

of the selected scale. 

IV. HIDDEN MARKOV MODELS  

Hidden Markov models are a doubly stochastic process in 

which the observed data are viewed as the result of having 

passed the hidden finite process (state sequence) through a 

function that produces the observed (second) process. 

In the pattern recognition paradigm each class of beat is 

represented by a separate model and after decoding, the class 

for which the probability (likelihood) of occurrence is 

greater is selected. Since the ECG is characterized by a time 

sequence waves occurring almost always in the same order 

which reflects the sequential activity of the cardiac 

conduction system an HMM structure where the states are 

connected in a left-to-right order was adopted.  In [5] it is 

shown that a full connected HMM is eventually more 

appropriate for HMM modeling since the beat sequence 

reproduced by this kind of HMM is almost perfect. Figure 4 

shows the model structure adopted for the several 

pathologies considered in the ambit of this paper. 
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Figure 4 A left-to-right HMM with 6 states 

 

The next issue is the choice of the number of Gaussian 

mixtures. For continuous models (CDHMMs), it has been 

found that it is more convenient and sometimes preferable to 

use diagonal covariance matrices with several mixtures, 

rather than fewer mixtures with full covariance matrices. 

The reason is the difficulty in performing reliable re-

estimation of the off diagonal components of the covariance 

matrix from the necessarily limited training data. The 

HMMs in this work use five Gaussian mixtures per 

transition. 

The output probability density function, which defines the 

conditional likelihood of observing a set of features when a 

transition through the model takes place, is usually a 

multivariate Gaussian mixture for the most engineering 

applications involving hidden Markov models. These 

probability density functions are associated with the 

transitions which configures a Continuous Density Hidden 

Markov Models (CDHMMs) Mealy machine and are given 

by 
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where c is the number of components in the Gaussian 

mixture,  G(…) stands for bi-variate normal distribution with 

mean vector  and covariance matrix for the ith mixture 

component and transition ut given respectively by iut ,)  and  

iut ,( . As the components of observation vector are assumed 

iid G(…) function in equation (2) is simply the product of 

five Gaussian functions. The mixture coefficients iut
b ,  

satisfy, for each transition ut , to 
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so that, equation (2) is a probability density function. In our 

experiments the observations were modeled by five 

components in the Gaussian mixture (C=5) in order to fit 

best data with multimodal distributions.  

The Estimation of HMM parameters from a set of 

representative training data can be done by using the Baum-

Welch algorithm which is based on the decoding of all the 

possible state sequence, or alternatively by using the Viterbi 

algorithm which is based on the most likely state sequence 

[3]. The adopted training was the MLE procedure in the 

Viterbi framework, which goal is to maximize iteratively the 

following probability density function 

 

# $ # $ )/(,// *** SPSYfYf &  (4)

 

where Y is the observation sequence, S the most likely state 

sequence and   the set of HMM parameters. The model 

reestimation formulas can be found in [3]. 

V. EXPERIMENTAL RESULTS  

Experimental results were evaluated by using the MIT-

BIH Arrhythmia Database. Normal (N) and premature 

ventricular contraction (V) beats, in atrial fibrillation (AF), 

atrial flutter (AFL) and normal (N) rhythms were selected. 
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The training set contains the 121, 122, 221 and 222 

records and the testing set contains the 105, 112, 121, 122, 

210, 221 and 222 records of the MIT-BIH arrhythmia 

database, 300 and 301 of the Data-Acquisition System. For 

the training set 1445 normal (N) pulses of 121 (N rhythm) 

and 122 (N rhythm), 682 normal and premature ventricular 

contraction (V) pulses of 221 (AF rhythm) and 197 normal 

pulses of 222 (AFL rhythm) records were used. The testing 

set contains 3024 pulses of 105, 112, 121, 122, 300 and 301 

records, 1011 pulses of 210 and 221 records and 246 pulses 

of 222 records, which means that data for training and 

testing purposes was obtained from different patients, which 

is normally known as patient-independent analysis. Table 1 

shows the HMM based pulse classification system using 

features from wavelets selected from IWT at three different 

scales, respectably d1, d2 and d3. Both MLII and V1 signals 

were used each one with their own HMM. A pulse is 

considered classified if the score from both models agree, 

otherwise the pulse is considered wrong. Wrong pulses are 

separated for posterior analysis by the physician while the 

misclassified pulses shown in Table 1 are derived from 

classified pulses. 

 
TABLE 1  

THE CONFUSION MATRIX ASSOCIATED DWT 

  AFN AFV  AFLN NN Total  Pr+  

AFN 864 0 0 0 864 1 

AFV 0 114 0 0 114 1 

AFLN 0 0 237 0 237 1 

NN 33 0 9 3024 3066 0.98 

Total 897 114 246 3024 4281  

Sensitivity 0.96 1 0.96 1   

 

The row labeled “Total” means the total number of beats 

used in experiment for each class listed in the corresponding 

column. 

Figure 5a and figure 5b shows two pulses for which the 

result of the decoding process was a different class for each 

derivation. This constitutes a recognition error detected at 

run time and these pulses are separated for posterior analysis 

by the physician. The first pulse is clearly an “A” pulse and 

the second is a “j” pulse so not belonging to the considered 

arrhythmia classes. 

 

           
 

Figure 5a and 5b Selected pulses for posterior analysis by the physician  

VI. CONCLUSION 

This paper reports a robust ECG classification system, 

regarding the cardiac arrhythmia detection, capable of 

working as first trial equipment, requiring however 

physician intervention for reliable diagnosis requirements. 

Uncertainty about classification by the automatic recognizer 

is signaled and the physician is required to make diagnosis 

based on medical knowledge and/or in complementary 

exams. This system takes advantage of advanced signal 

processing techniques as WT and HMM’s. WT allows 

observing the signal at different scales, each one 

emphasizing some signal properties and characteristics. By 

using simultaneously different scales more signal properties 

can be simultaneously observed hence better characterized 

will be the ECG pulse. As a matter of fact, different and 

opposite properties as the low content frequency of the P-

wave and the high content frequency of the QRS can be 

accurately simultaneously observed. HMM’s are statistical 

models adequate for modeling signals of non-stationary 

nature. Assuming that WT can emphasize the non-stationary 

of the ECG by emphasizing their frequency content that 

varies with time, then HMM’s appear as a natural model 

with recognized capacities to break the ECG in quasi-

stationary segments. Hence both techniques can complement 

each other in the analysis of signals of non-stationary nature. 
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