
  

  

Abstract— This paper is concerned with the automatic 

control of drug administration in patients suffering from 

Brugada Syndrome (BS). Drugs such as flecainide, 

procainamide, ajmaline and pilsicainide should be 

administrated under carefully controlled electrocardiogram 

(ECG) monitoring given that the treatment must be stopped if 

some ECG disturbing conditions appear. These conditions are, 

among others the development of premature ventricular 

contraction (PVC), atrial fibrillation (AF) and the widening of 

the QRS wave. The proposed system can detect these 

abnormalities by using a pattern recognition approach based 

on Hidden Markov Models (HMM) with features extracted 

from three scales of the Wavelet Transform (WT). 

Performances higher than 98% were reached regarding the 

classification of normal and abnormal pulses. The system was 

trained and tested mainly in data from the standard MIT-BIH 

arrhythmia database. 

I.  INTRODUCTION 

The Brugada syndrome has attracted great interest 

because of its high incidence in some parts of the world and 

its association with high risk for sudden death in young and 

healthy adults. Only automobile accidents cause more deaths 

than the BS in some countries [1]. 

While BS is associated with a peculiar pattern on ECG, 

automatic diagnosis is very difficult since other clinical 

criteria than the ECG pattern are required. Patients with 

typical ECG features but clinical criteria other than BS are 

said to have the Brugada pattern but not BS [2]. 

BS is associated with a persistent ST segment elevation in 

leads V1 to V3, although isolated cases have been described 

involving the inferior leads; such patients appear to have a 

unique mutation [3].  Three distinct types of ST segment 

elevation have been described. In type 1, the ST segment 

gradually descends to an inverted T wave. In type 2, the T 

wave is positive or biphasic, and the terminal portion of the 

ST segment is elevated more than 1 mm. In type 3, the T 

wave is positive, and the terminal portion of the ST segment 

is elevated less than 1 mm. 
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Once detected BS, especially type 1 ECG pattern can 

occasionally be unmasked by sodium channel blockers (eg, 

flecainide, procainamide, ajmaline and pilsicainide) [1]. The 

reported sensitivity to these drugs has been variable, ranging 

from 100% [4] to as low as 15% [5]. The administration of 

these drugs takes about 10 minutes except ajmaline that 

takes about 5 minutes, and should be performed under 

continuous ECG monitoring [1]. Indications for termination 

are development of a diagnostic type 1 Brugada ECG, a ≥ 2 

mm increase in ST segment elevation in patients with a type 

2 Brugada ECG, the development of ventricular premature 

beats or other arrhythmias, or widening of the QRS ≥ 30% 

above baseline [6]. 

This paper presents an automatic system that can detect 

some of the above abnormalities requiring termination of the 

drug administration process. Only PVCs, AF and QRS 

widening are considered in the ambit of this paper. The 

system is based on HMMs supported by wavelet based 

features. 

HMMs have been successful applied to ECG 

segmentation and arrhythmia classification [7, 8] to name 

only a few, therefore they seem to be appropriate for the 

current purpose. Regarding HMM morphology a Bakis or 

left-to-right Continuous Density Hidden Markov Models 

(CDHMMs) with a Gaussian Mixture Model (GMM) 

associated to each model state transition was used. Although 

more complete HMMs structures have shown better 

performance especially for ECG synthesis purposes [12], 

simpler HMMs structures can capture most of the 

information regarding ECG pulse classification [8]. The 

ECG signal is previously sliced in singular pulses by using 

the Pan-Tompkins [9] algorithm and each pulse class is 

modeled by a six state model, modeling the Q-S, S-T, T, T-

P, P and P-Q events. GMMs model a synthesized signal 

obtained from the inverse wavelet transform (IWT) of three 

selected scales of the WT. The Wavelet Transform (WT) has 

the advantage over conventional techniques that 

time/frequency representation can be more accurately 

modeled by decomposing the signal in the corresponding 

scales. When the composition level decreases in the time 

domain it increases in the frequency domain providing 

zooming capabilities and instantaneous characterization of 

the signal [10, 11].   

The system presents Sensibility and positive Predictivity 

above 96% in the detection of PVC (V) and normal pulses 

(N) in the AF and VT rhythms, and RBBB (R) pulses in the 

normal rhythm (N). Additionally elongated QRS embedded 

in normal rhythm ECG pulses must also be detected. 

Regarding detection of normal and abnormal pulses, which 

is the goal in the present application,  the performance rises 
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to more than 99%, reaching 100% considering that the 1% of 

pulses are not wrongly classified, instead they are separated 

for physician analysis given the uncertainty in the 

recognition engine. Only certainties above a predetermined 

threshold were effectively considered.       

Training and testing data for ventricular and atrial 

arrhythmias are from MIT-BIH database. QRS wide 

examples were artificially generated from normal pulses and 

regarding the test phase this measure is obtained by 

backtracking the most likely state sequence in the Viterbi 

algorithm.  
 

II. WAVELETS ANALYSIS OF ECG 

The wavelet transform (WT) is a signal representation in a 

scale-time space, where each scale represents a focus level 

of the signal and therefore can be seen as a result of a band-

pass filtering.  

The most usual way to sample the time-scale plane is on a 

so-called “dyadic” grid, which means that sampled points in 

the time-scale plane are separated by a power of two.  

As the scale represents the level of focus from the which 

the signal is viewed and which is related to the frequency 

range involved, then digital filter banks are appropriate to 

break the signal into different scales (bands). If the 

progression in the scale is “dyadic” the signal can be 

sequentially half-band high-pass and low-pass filtered.  

The output of the high-pass filter represents the detail of 

the signal. The output of the low-pass filter represents the 

approximation of the signal, for each decomposition level, 

and will be decomposed in its detail and approximation 

components at the next decomposition level, and the process 

proceeds iteratively in a scheme known as wavelet 

decomposition tree, which is shown in figure 1. After the 

filtering half of the samples can be eliminated according to 

the Nyquist’s rule, since the signal now has only half of the 

frequency. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Figure 1 Wavelet decomposition tree 
 

 

This very practical filtering algorithm yields as Fast 

Wavelet Transform (FWT) and is known in the signal 

processing community as two-channel subband coder [10].  

One important property of the Discrete Wavelet 

Transform (DWT) is the relationship between the impulse 

responses of the high-pass (g[n]) and low-pass (h[n]) filters, 

which are not independent of each other and they are related 

by 

 

 (1)

 

 

where L is the filter length in number of points. Since the 

two filters are odd index alternated reversed versions of each 

other they are known as Quadrature Mirror Filters (QMF). 

Perfect reconstruction requires, in principle, ideal half-band 

filtering. Although it is not possible to realize ideal filters, 

under certain conditions it is possible to find filters that 

provide perfect reconstruction. The most famous ones were 

developed by Ingrid Daubechies and they are known as 

Daubechies wavelets. In the ambit of this work only the 

three least scales of Daubechies wavelets with 2 vanishing 

moments (db-4) were used. No other wavelet types were 

tried since this topic is out of the scope of this paper. 

The multiresolution analysis based on the DWT can 

enhance small differences when the signal is simultaneously 

observed at the most appropriate scales.   Figure 2 shows the 

result of the application of the DWT one cycle of a normal 

ECG.  
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Figure 2 One ECG pulse viewed at scales d1, d2 and d3 

 

 

From the figure we can observe that d1 level (frequency 

ranges of 90-180Hz) emphasize the high frequency content 

of complex QRS when compared with P and T waves. D2 

and d3 levels show clearly that other waves of small 

frequencies not seen at d1 scale are just appearing. 

The features used in the scope of this work are 

simultaneous observations of d1, d2 and d3 scales, therefore 

the observation sequence generated after the parameter 

extraction is of the form O=(o1, o2, …oT) where T is the 

signal length in number of samples and each observation ot 

is a tri-dimensional vector. Each element of the observation 

vector is derived from the Inverse Wavelet Transform (IWT) 

of the selected scale. 
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III. HIDDEN MARKOV MODELS  

Hidden Markov models are a doubly stochastic process in 

which the observed data are viewed as the result of having 

passed the hidden finite process (state sequence) through a 

function that produces the observed (second) process. 

In the pattern recognition paradigm each class of beat is 

represented by a separate model and after decoding, the class 

for which the probability (likelihood) of occurrence is 

greater is selected. Since the ECG is characterized by a time 

sequence waves occurring almost always in the same order 

which reflects the sequential activity of the cardiac 

conduction system an HMM structure where the states are 

connected in a left-to-right order was adopted.  In [12] it is 

shown that a full connected HMM is eventually more 

appropriate for HMM modeling since the beat sequence 

reproduced by this kind of HMM is almost perfect. Figure 3 

shows the model structure adopted for the several 

pathologies considered in the ambit of this paper. 
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Figure 3 A left-to-right HMM with 6 states 

 

 

 

The next issue is the choice of the number of Gaussian 

mixtures. For continuous models (CDHMMs), it has been 

found that it is more convenient and sometimes preferable to 

use diagonal covariance matrices with several mixtures, 

rather than fewer mixtures with full covariance matrices. 

The reason is the difficulty in performing reliable re-

estimation of the off diagonal components of the covariance 

matrix from the necessarily limited training data. The 

HMMs in this work use five Gaussian mixtures per 

transition. 

The output probability density function, which defines the 

conditional likelihood of observing a set of features when a 

transition through the model takes place, is usually a 

multivariate Gaussian mixture for the most engineering 

applications involving hidden Markov models. These 

probability density functions are associated with the 

transitions which configures a Continuous Density Hidden 

Markov Models (CDHMMs) Mealy machine and are given 

by 
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where c is the number of components in the Gaussian 

mixture,  G(…) stands for bi-variate normal distribution with 

mean vector  and covariance matrix for the i
th

 mixture 

component and transition ut given respectively by iut ,µ  and  

iut ,Σ . As the components of observation vector are assumed 

iid G(…) function in equation (2) is simply the product of 

five Gaussian functions. The mixture coefficients iut
b ,  

satisfy, for each transition ut , to 
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so that, equation (2) is a probability density function. In our 

experiments the observations were modeled by five 

components in the Gaussian mixture (C=5) in order to fit 

best the data with multimodal distributions.  

The Estimation of HMM parameters from a set of 

representative training data can be done by using the Baum-

Welch algorithm which is based on the decoding of all the 

possible state sequence, or alternatively by using the Viterbi 

algorithm which is based on the most likely state sequence 

[13]. The adopted training was the MLE procedure in the 

Viterbi framework, which goal is to maximize iteratively the 

following probability density function 
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where Y is the observation sequence, S the most likely state 

sequence and λ the set of HMM parameters. The model 

reestimation formulas can be found in [13]. 

 

IV. EXPERIMENTAL RESULTS  

Experimental results were evaluated by using the MIT-

BIH Arrhythmia Database and also some records belonging 

to our medical staff labeled as 300 and 301. Normal (N), 

premature ventricular contraction (V) and right bundle 

branch block (R), in atrial fibrillation (AF), ventricular 

bigeminy (B), normal (N) and ventricular tachycardia (VT) 

rhythms were selected. QRS wide examples were artificially 

generated from normal pulses of normal rhythm. A 

controlled interpolation followed by low-pass filtering was 

used for this purpose. 

The training set contains the 106, 118, 121, 122 and 221 

records and the testing set contains the 105, 106, 112, 118, 

121, 122, 205, 210, 221 records of the MIT-BIH arrhythmia 

database, 300 and 301 of the Data-Acquisition System. For 

the training set 1445 normal (N) pulses of 121 (N rhythm) 

and 122 (N rhythm), 682 normal and premature ventricular 

contraction (V) pulses of 221 (AF rhythm), 162 premature 

ventricular contraction of 106 (B and VT (V rhythm)) and 

187 right bundle branch block (R) pulses of 118 (N rhythm) 

records were used. The testing set contains 3432 pulses of 

105, 106, 112, 121, 122, 205, 300 and 301 records, 1011 

pulses of 210 and 221 records and 412 pulses of 118 records, 

which means that data for training and testing purposes was 
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obtained from different patients, which is normally known as 

patient-independent analysis. The variance of the 

performance was not tested for other combinations of the 

training and testing set since the first goal is to evaluate the 

effectiveness of the system on testing data from real patients, 

so not belonging to the MIT-BIH database. Table 1 shows 

the HMM based pulse classification system using features 

from wavelets selected from IWT at three different scales, 

respectively d1, d2 and d3. Both MLII and V1 signals were 

used with their own HMM. A pulse is considered classified 

if the score from both models agree, otherwise the pulse is 

considered wrong. Wrong pulses are separated for posterior 

analysis by the physician while the misclassified pulses 

shown in Table 1 are derived from classified pulses. 

The row labeled “Total” means the total number of beats 

used in experiment for each class listed in the corresponding 

column. 

Regarding QRS wide detection only normal pulses of 

normal rhythm were tested since other rhythms than normal 

do not occur in the ambit of the current application, which 

stops under abnormal rhythm conditions. This measure is 

obtained by backtracking the most likely state sequence in 

the Viterbi algorithm.  
 

 
TABLE 1  

THE CONFUSION MATRIX 

  AFN AFV  NN NR VV Total  Pr+  

AFN 864 0 0 0 0 864 1 

AFV 0 114 0 0 0 114 1 

NN 33 0 3391 5 0 3429 0.98 

NR 0 0 0 407 0 407 1 

VV 0 0 0 0 41 41 1 

Total 897 114 3391 412 41 4855  

Sensitivity 0.96 1 1 0.98 1   

 

 

The QRS wide baseline is set to the average of all QRS 

wide before drug administration starts. After starting the 

drug administration all normal pulses in the normal rhythm 

are submitted to the QRS wide measure. Measures ≥ 1.3 

baselines originate a system alarm, as well as detection of 

any arrhythmia.     

V. CONCLUSION 

This paper reports a robust ECG classification system, 

regarding cardiac arrhythmia detection, with applications in 

the administration drug control in patients suffering from 

Brugada Syndrome. The current system does not detect yet 2 

indications that must stop de drug administration, namely the 

diagnostic type 1 Brugada and a 2mm increase in ST 

segment elevation in patients with a type 2 Brugada. This 

topic is currently under research. Only pulses classified in 

the same class for both derivations were considered correctly 

classified pulses. Pulses classified in different classes in each 

derivation are uncertainty pulses selected for posteriori 

physician analysis. This procedure improves the true 

positive rate requiring however physician intervention for 

reliable diagnosis requirements. This system takes advantage 

of advanced signal processing techniques as WT and 

HMM’s. WT allows observing the signal at different scales, 

each one emphasizing some signal properties and 

characteristics. By using simultaneously different scales 

more signal properties can be simultaneously observed 

hence better characterized will be the ECG pulse. As a 

matter of fact, different and opposite properties as the low 

content frequency of the P-wave and the high content 

frequency of the QRS can be accurately simultaneously 

observed. HMM’s are statistical models adequate for 

modeling signals of non-stationary nature. Assuming that 

WT can emphasize the non-stationary of the ECG by 

emphasizing their frequency content that varies with time, 

then HMM’s appear as a natural model with recognized 

capacities to break the ECG in quasi-stationary segments. 

Hence both techniques can complement each other in the 

analysis of signals of non-stationary nature. 
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