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Abstract Noninvasive brain–computer interfaces (BCI)

translate subject’s electroencephalogram (EEG) features

into device commands. Large feature sets should be down-

selected for efficient feature translation. This work pro-

poses two different feature down-selection algorithms for

BCI: (a) a sequential forward selection; and (b) an across-

group variance. Power rar ratios (PRs) were extracted from

the EEG data for movement imagery discrimination.

Event-related potentials (ERPs) were employed in the

discrimination of cue-evoked responses. While center-out

arrows, commonly used in calibration sessions, cued the

subjects in the first experiment (for both PR and ERP

analyses), less stimulating arrows that were centered in the

visual field were employed in the second experiment (for

ERP analysis). The proposed algorithms outperformed

other three popular feature selection algorithms in move-

ment imagery discrimination. In the first experiment, both

algorithms achieved classification errors as low as 12.5%

reducing the feature set dimensionality by more than 90%.

The classification accuracy of ERPs dropped in the second

experiment since centered cues reduced the amplitude of

cue-evoked ERPs. The two proposed algorithms effectively

reduced feature dimensionality while increasing movement

imagery discrimination and detected cue-evoked ERPs that

reflect subject attention.
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1 Introduction

Current brain–computer interfaces (BCI) determine the

intent of the users from a variety of electroencephalo-

graphic features [32]. BCIs enable the physically disabled

as a consequence of neuromuscular disorders, amyotrophic

lateral sclerosis, brainstem stroke or spinal cord injuries to

control a device with their brain signals [32]. Noninvasive

BCI applications commonly use scalp electroencephalo-

gram (EEG) for laboratory and clinical applications. BCI

systems usually adopt one of three operation types: in

operant conditioning, the subject is extensively trained to

control his own rhythms [33]; in pattern recognition, a

classification algorithm discriminates mental task perfor-

mance by identifying the subject-specific EEG patterns

corresponding to each mental task [26]; and in event-

related potential (ERP) detection, learning algorithms are

employed to detect stimulus-evoked responses in a single-

trial basis [13, 21]. Particularly when the latter two BCI

approaches are adopted, as increasing number of features

are used to train the classifier, the risk of over-fitting to the

data increases. The effects of a low ratio of the number of

samples to the number of features have been extensively

discussed as the ‘‘curse of dimensionality’’ [7]. Since long

training experiments are not practical, a dimensionality

reduction technique should be employed to find a feature
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subset that minimizes the cross-validation error of mental

task discrimination.

Two dimensionality reduction methodologies have been

adopted in BCI research. In one, studies make use of

common-spatial patterns (CSPs) [22, 29], principal com-

ponent analysis (PCA) [16, 25], and independent compo-

nent analysis (ICA) [17], among others, that transform the

original feature space into lower dimensional spaces. An

alternative methodology is feature down-selection which

produces a subset of the original features that are most

relevant to discriminate subject performance. The greatest

advantage of the latter methodology is the effective

reduction of BCI computational complexity. Among the

methods proposed in previous studies to down-select fea-

ture sets are wrapper or filter methods based on depen-

dence on a learning technique [34]. Wrapper methods

typically use the predictive accuracy or other performance

measures of a pre-selected classifier to evaluate a feature

subset. Some exemplars are recursive feature elimination

[20] and other sequential selection algorithms [8, 19]. The

filter methods separate feature selection from classifier

training and produce feature subsets independent of the

classifier. The relief algorithm [24] and PCA [2] are often

used as filter methods. Genetic algorithms (GAs) are also

popular in BCI research [9].

This work proposes two different algorithms to down-

select features: (a) a wrapper-type sequential forward

selection (SFS) algorithm that adds features to the subset

sequentially for task discrimination and (b) a filter type

across-group variance (AGV) algorithm, based on a for-

mulation of PCA that accommodates the group structure of

the data set. Two different EEG feature types were used:

power ratios (PRs) and event-related potentials (ERPs).

While PR features were extracted for movement imagery

discrimination, the ERP features were extracted in order to

detect cue-evoked potentials [13, 21, 30]. The developed

algorithms were applied to the data of five subjects with no

previous BCI experience. The SFS and AGV algorithms

are intended to improve feature selection by maximizing

the classification accuracy of the learning algorithm and

minimizing both the number of EEG channels selected and

the computation time. The performances of the proposed

algorithms in movement imagery discrimination were

evaluated in comparison to three other feature selection

algorithms in common use: recursive feature elimination

(RFE) [20], genetic algorithm (GA) [29], and relief [24].

The selection of ERPs intends to determine the optimal

EEG channels to detect subject attention in two different

experimental conditions: in Experiment 1, the subject was

stimulated with center-out asymmetric arrows that are

typically used for BCI calibration [3, 12, 26]; in Experi-

ment 2, the subject was stimulated with symmetric arrows

that were balanced in the subject visual field.

2 Methods

Five healthy human subjects, 25–32 years old, four males

and one female, none of them under any medication,

consented to participate in this study. The experiments

were conducted under Institutional Review Board (IRB)

approval at Penn State University.

2.1 Experimental paradigm

As depicted in Fig. 1, each trial started with the presenta-

tion of a cross centered on the screen, informing the subject

to be prepared. Three-seconds later, a cue was presented on

top of the cross. An arrow that was unbalanced (Experi-

ment 1—Fig. 2a and b) or balanced (Experiment 2—

Fig. 2c and d) in the visual field pointed to either left or

right on a computer screen to cue the subject on the left or

right hand movement imagery tasks. The subject was

instructed to perform the movement imagery during a 4-s

period starting at the cue presentation. Then, both the cross

and the arrow were removed from the screen indicating the

end of the trial. The intertrial period was randomly jittered

to be between 3 and 4.5 s long. Each experiment had 2 runs

of 40 trials each.

Fig. 1 Paradigm implemented in Experiment 1 for left versus right

hand movement imagery tasks: a warning stimulus for a coming cue;

b right hand movement imagery cue; and c random intertrial period

Fig. 2 Screen frames cueing the subject about the movement

imagery tasks to perform. In (a) and (b), asymmetric cues were

employed in the first EEG experiment while in (c) and (d) the

symmetric cues were employed in the second EEG experiment

(frames from left to right: right hand and left hand)
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2.2 Electrode settings

Data were acquired from 19 electrodes according to an

extension of the standard 10–20 system (i.e., Fp1, Fp2, F7,

F3, Fz, F4, F8, T7, C3, Cz, C4, T8, P7, P3, Pz, P4, P8, O1,

and O2). All electrodes were referenced to linked earlobes.

Data were digitized at 256 Hz and passed through a

fourth order 0.5–60 Hz band-pass filter. Each channel’s

raw EEG signal was epoched from the cue time point to 4 s

after the cue. The presence of artifacts in the epochs was

automatically detected through the commercial EEG soft-

ware BrainVision Analyzer, BrainProducts GmbH, that

checks for maximum allowed absolute value (50 lV) at

any time point, or maximum allowed absolute potential

difference (20 lV) between two consecutive time points.

The epochs contaminated with artifacts (e.g., eye blinks,

muscle artifacts) were excluded from further analyses. The

EEG features were extracted from 50 to 75 epochs out of

80 that were not contaminated with artifacts.

Data were re-referenced in order to improve the spatial

resolution for coherence estimates. Because of the limita-

tion of each re-referencing method [27], the original data

(Vi
REF) were referenced to a common-average and to a

Laplacian filter (Vi
LAP), according to Eqs. 1 and 2. Si con-

tains the four electrodes surrounding the central electrode

Vi
REF. The Laplacian filter calculates a weight gij for each

peripheral electrode which depends on the distances dij

between the j peripheral electrodes in Si and the central

electrode i, according to Eq. 2.

VLAP
i ¼ VREF

i �
X

j2Si

gijV
REF
j ð1Þ

gij ¼
1
�
dijP

k2Si

1=dik

ð2Þ

2.3 Power ratios

Alpha (8–14 Hz) and beta (16–24 Hz) EEG frequency

bands include rhythms that are reactive to movement

imagery [32]. Alpha is an idling rhythm which is also

termed ‘‘rolandic mu rhythm’’ when generated in a motor-

related cortex area. Alpha amplitude decreases during the

execution of, as well as with imagined, limb movement at

motor-related cortical locations. Beta rhythm generally

increases in amplitude at limb movement initiation and

termination at motor-related cortical locations [32].

The epochs used to extract the EEG power ratios include

the data from the whole imagery time period (0–4 s from

the time the cue is presented). Five narrow frequency bands

were defined: 8–12 Hz (low alpha band); 10–14 Hz (high

alpha band); 16–20 Hz (low beta band); 18–22 Hz (mid-

beta band); and 20–24 Hz (high beta band). The power in

the frequency broad band 0.5–30 Hz was used to normalize

the power contained in the narrow bands. The power

spectral density (PSD) was calculated through a periodo-

gram to provide high-frequency resolution (no significant

differences were found between periodogram and Welch

methods). Each band power was computed as the sum of all

PSD components (in V2/Hz) in the corresponding fre-

quency range. The PR feature matrices had 95 features (5

PR features 9 19 electrodes).

2.4 Event-related potentials

Event-related potentials are slow, nonoscillatory EEG

potential shifts in response to certain events (e.g., visual or

auditory stimuli) [23]. The ERP in response to auditory or

visual stimuli can be modulated in amplitude and latency

by stimulus parameters such as intensity [23], spatial dis-

tribution [31], familiarity [11] and EEG phase [18], as well

as attention [21].

Following PR extraction, the raw epoch 0–1 s (post-

stimulus) was low-pass filtered at 4 Hz with an eighth-

order Chebyshev type I filter and used for ERP extraction.

This epoch demonstrated the best task discrimination in

previous work [5]. The filtered 256 point time series was

down-sampled to 10 points per second. The first eight time

points of the down sampled time series represent the fea-

tures to be extracted from each EEG channel. A feature

matrix with 152 features (8 ERP features 9 19 electrodes)

was generated.

3 Feature subset selection methods

The original feature matrix Y has samples (n) in rows and

features (p) in columns. Considering that just a few q

features out of p may be relevant for discrimination, data

dimensionality should be reduced for robust and effective

discrimination.

We here introduce a forward sequential selection algo-

rithm and a PCA-based algorithm, as well as a cross-vali-

dation scheme that calculates the classification error,

optimizes algorithm parameters and determines a classifi-

cation model. The cross-validation error predicts the clas-

sifier’s online performance.

3.1 Cross-validation scheme

The cross-validation error used to evaluate the down-

selection algorithms’ performance was calculated through

a 10-fold double-loop cross-validation scheme. The opti-

mal number of features to select (input parameter of the

proposed algorithms) is optimized in the inner cross-vali-

dation loop. The performance of the classifier previously
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trained with the selected features, is validated in the outer

loop. Therefore, 10 validation error values are calculated.

However, the 10-fold cross-validation results are consid-

erably affected by variability. For this reason, the whole

procedure was repeated 10 times. The median of the 100

validation error values (10-fold 9 10 repetitions) was

defined as the estimate of the classification online perfor-

mance using the selected features.

A new feature subset was calculated at every validation

fold. The number of times that each feature is selected for

validation is indicative of its relevance for discrimination.

Likewise, channel discriminative ability is assessed by its

frequency of selection. A channel is deemed selected when

at least one of its particular features (either ERPs or PRs) is

selected.

3.2 Linear discriminant classifier

A form of Fisher Discriminant Analysis that was shown to

be robust for spatiotemporal EEG pattern discrimination

was applied [28]. The canonical discrimination function z

is the result of a linear transformation of the original data Y

according to Eq. 3. The discrimination coefficients of the

canonical discrimination function are denoted by the vector

a:

z ¼ Ya: ð3Þ

The discrimination coefficients in a were calculated

according to calculations described in the Appendix. The Y

matrices were determined by the feature selection

algorithms for each cross-validation fold.

The discrimination quality was assessed through three

different measures: cross-validated error rate for group

membership prediction of every p-variate sample; Wilks’

statistic and its normal theory confidence limits; and a

bootstrapped confidence limit that is robust against devia-

tions from normality in the data structure [10]. The mul-

tivariate data matrix Y is transformed to the vector z which

has mean u and a normal p-variate distribution f(z). Prior

probabilities pj are calculated as the ratio of the samples

within group j to the total number of samples n. According

to the Bayesian theory, the probability that the data came

from group j of two groups (in our case left-hand or right-

hand movement imagery), given a vector z, is calculated

through pjz in Eq. 4:

pjz ¼
pjfjðzÞ

p1f1ðzÞ þ p1f2ðzÞ
j ¼ 1; 2: ð4Þ

The term pjfj(z) was approximated by exp[q(z)] where

q(z) = uj
Tz - �uj

Tuj ? ln(pj) [10]. The mean of the

canonical discrimination function for group j is uj. The

highest pjz determined the predicted group membership for

each sample. In order to robustly assess discrimination

quality, the cross-validated prediction error rate was

calculated. The normal theory Wilks’ statistic (W) analyses

the eigenvalues of the linear transformation Ya above. Since

W is chi-squared distributed, the discrimination significance

was assessed by comparing W with the 95% confidence limit.

The statistic W approaches the value zero as the group

separation improves. As our data certainly deviate from

normality, discrimination quality was also tested through a

re-sampling technique (bootstrap) that permutes the data

labeling to test whether the group assignment is meaningful.

The confidence limit of a classification error was set to 95%

of the 100 permutations that were tested. Further details on

the discrimination quality measures can be found in [28].

3.3 Sequential forward selection algorithm

This method resulted in a wrapper-type algorithm since a

feature is included in subset i if it leads to the highest group

discrimination (lowest Wi) of the canonical function zi

among all remaining features. The four main steps of this

algorithm are described below:

1. First feature selection: the correlation values between

the transformed data vector zp (obtained from all p

features) and the actual p feature vectors (columns of Y)

are called the structural coefficients of zp [4]. The

structural coefficients represent the discriminative

power of each feature when it is considered for

discrimination independent of the p-1 remaining fea-

tures. The feature with the highest structural coefficient

is selected first as Y1. z1 and W1 are calculated.

2. Feature selection loop: In each loop iteration i

(i = 2,…, p), the candidate feature to be selected is

the feature that jointly with the one(s) selected in the

previous i-1 iterations, achieves the highest group

discrimination (the lowest Wi). If Wi \ Wi - 1 and is

significant at the 95% confidence level, the candidate

feature is included in Yi. zi is also calculated for each

iteration.

3. Loop stop criterion: The feature selection loop stops

when no feature can increase the group discrimination

any further (any Wi?1 [ Wi) or all the p features have

already been selected.

4. Selected feature subset: the number of features q to

include in the optimal feature matrix Yn9q is optimized

in the cross-validation procedure. The optimal feature

subset equals the feature set of iteration i = q.

3.4 Across-group variance algorithm

This proposed filter-type method uses a special formulation

of PCA [6] to select features while reducing data dimen-

sionality. Initially, Y is decomposed through singular value
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decomposition (SVD) into three matrices: Un9c (compo-

nent orthogonal matrix; c is the number of principal com-

ponents), Sc9c (singular value diagonal matrix), and Vp9c

(eigenvector orthogonal matrix; p is the number of fea-

tures). The eigenvalue vector k of the feature covariance

(YTY) is calculated as the diagonal of S2. The principal

components are linear projections of the features onto the

orthogonal directions that best describe the data set vari-

ance. However, when data presents a group structure, the

information provided by a component is more detailed than

a variance value. Thus, the total covariance (W) can be

decomposed into a sum of within (Wwithin) and between

(Wbetween) group covariance parts. The pooled covariance

matrix is used as an estimation of the within group

covariance matrix (Wwithin) as in Eq. 5:

Wwithin ¼
ðn1 � 1ÞW1 þ ðn2 � 1ÞW2

n1 þ n2 � 2
ð5Þ

By using the Bessel’s correction, the sample covariance

matrix Wi is weighted by ni - 1 (ni is the number of

samples belonging to the ith group) instead of ni in order to

correct the estimator bias (Wi has rank ni - 1 at most). The

variance information provided by a principal component in

vector notation is deduced in Eq. 6:

kj ¼ vT
j Wvj ¼ vT

j Wwithinvj þ vT
j Wbetweenvj ð6Þ

where vj is the jth eigenvector (a column of Vp9c matrix)

and corresponds to eigenvalue kj. While vT
j Wwithinvj is a

function of the sample distances to their respective group

mean, vT
j Wbetweenvjis a function of the distances between

the respective group means. In the discrimination context,

only the latter comprises useful variance information.

Therefore, the distance between groups given by the ith

component, normalized by its total variance, gives a

relative measure to calculate the AGV as in Eq. 7:

AGVi ¼
vT

i Wbetweenvi

ki
ð7Þ

The between group covariance matrix (Wbetween) is

calculated fromW�Wwithin:

Although the principal components are organized by

decreasing order of total variance (eigenvalues ki), this

order is optimized for orthogonality rather than discrimi-

nation between groups. Therefore, the components are

ordered according to the across group variance (AGV) in

order to take the data group structure into account.

The dimensionality reduction results from the truncation

of the c principal components ranked by decreasing AGV.

The truncation criterion is a cumulative sum percentage of

the descending ordered AGV scores and was assigned

threshold values (typically 60–90%) for variance trunca-

tion [16]. The optimal threshold value was found by cross-

validation. If k components met the truncation criterion,

the truncated component matrix Un9k (k \ c) is a lower

dimensional representation of the original feature space

and more suitable for group discrimination. The retained

variance information was transformed back to the original

feature space using a modified version of the spectral

decomposition property as in Eq. 8. In order to determine

the features which resemble the retained components with

minimal information loss, an across-group covariance

matrix (WAGV) was calculated:

WAGV ¼
Xk

i¼1

AGViviv
T
i : ð8Þ

Note that AGVi is used instead of ki in the spectral

decomposition Eq. 8. Each diagonal value of WAGV

represents the variance of a particular feature accounted for

by the k retained principal components and measures feature

discriminability. A ranked list with all p features in descending

order of discriminability was determined. Finally, the number

(q) of features that determine the optimal feature matrix Yn9q

was optimized by cross-validation.

4 Feature selection in common use

The accuracy of PR classification and the features selected

were evaluated for the proposed algorithms (SFS and

AGV) and three other feature selection algorithms in

common use. The recursive feature elimination (RFE)

algorithm, which is a wrapper method, uses the feature

weights of the support vector machine (SVM) training

process to perform backward feature elimination [20]. The

relief algorithm, which is a filter method, assigns a rele-

vance value to each feature producing a ranking [24]. The

GA, which is a global search algorithm, is a wrapper

method and was implemented according to Fatourechi

et al. [9].

5 Results

Table 1 provides the median cross-validation error and

median number of features selected from 100 folds in the

cross-validation scheme. This table also provides the

number of folds whose discrimination was significant

through the Wilks’ statistic with 95% confidence. The

classification accuracies that were significant by the boot-

strap method are highlighted in bold face.

5.1 Algorithm comparison

The PRs were used for comparison of the proposed feature

selection algorithms (SFS and AGV) with three other

Med Biol Eng Comput (2010) 48:331–341 335
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algorithms in common use (RFE, GA, and relief) to dis-

criminate movement imagery responses. Table 1a (com-

mon-average reference) and b (Laplacian spatial filter)

presents the PR classification errors for all tested feature

selection algorithms and demonstrate that AGV algorithm

performed better than the other algorithms. The AGV

algorithm achieved cross-validation errors between 12.5%

and 38.09%, selecting only 4 of 95 available PRs, on

average. Although the SFS algorithm performed similarly

to the RFE algorithm, the former only selected 8 (common-

average) and 7 (Laplacian) PRs while RFE selected 50

(common-average) and 55 (Laplacian) PRs. The GA and

relief algorithms ranked next in increasing error. The AGV

algorithm achieved lower error values and selected fewer

features than the SFS algorithm in most cases. However,

while the SFS algorithm achieved discriminations that

were significant through the Wilks’ statistic in every cross-

validation fold, the AGV algorithm discriminations were

less significant. Thus, SFS and AGV algorithms demon-

strated particular strengths.

The feature selection of the proposed algorithms was

evaluated in terms of EEG channels and PRs in specific

frequency ranges. As illustrated in Fig. 3a and c, central

channels C3 and C4 were frequently selected by both

proposed algorithms to discriminate between left and right

hand movement imageries. The parietal channels P3, Pz,

and P4 were also relevant for the left versus right hand

movement imagery discrimination when the AGV

algorithm was applied. The frequency bands 8–12 and 10–

14 Hz were selected by both algorithms for most of the

validations, as illustrated in Fig. 3b and d.

5.2 Event-related potential discrimination

The proposed feature selection algorithms were also

applied on the discrimination of ERPs in response to

arrangements of the movement cues (left and right arrows).

While five subjects agreed to participate in Experiment 1

(same data as in PR analysis), only three of them under-

went the Experiment 2. The arrows in Fig. 2a and b cued

subjects in Experiment 1. Although, as in Experiment 1,

the cues pointed either to the left or to the right, they were

balanced across the visual field in Experiment 2 (Fig. 2c

and d). The cue changes were employed in order to detect

possible perception related EEG responses [21, 31]. Fig-

ure 4 compares cross-validated classification errors from

both experiments and demonstrates that Experiment 2

generally led to a classification error increase (except for

Subject C with AGV algorithm). Classification perfor-

mance degradation was observed for both re-referencing

methods.

In Experiment 1, the introduced algorithms down-

selected feature spaces from 152 to less than 13 ERPs with

cross-validation errors between 14% and 33%. The selec-

tion of ERPs in response to left versus right hand move-

ment cues is illustrated in Fig. 5 for Experiment 1 and in

Table 1 Results of left versus right hand, movement imagery task discrimination for Experiment 1 when power ratio (PR) features were

extracted

Subject code SFS AGV RFE GA Relief

Error Nfeat NW \ 95% Error Nfeat NW \ 95% Error Nfeat Error Nfeat Error Nfeat

(a) Common-average reference

A 33.33 9 100 14.29 5 100 32.67 62 37.24 45 41.58 48

B 62.50 11 100 16.67 5 99 44.90 45 49.25 45 45.85 44

C 25.00 3 100 12.50 5 100 29.64 86 32.94 46 46.12 37

D 50.00 7 100 28.57 1 67 53.27 20 49.83 45 51.81 55

E 50.00 12 100 33.33 5 40 47.94 37 50.83 45 49.57 46

Mean 44.17 8.4 100 21.07 4.2 81.2 41.68 50 44.02 45.2 46.99 46

(b) Laplacian spatial filtering

A 28.57 10 100 14.29 4 100 36.35 64 37.86 45 43.42 48

B 50.00 7 100 16.67 4 99 41.82 50 45.74 46 44.85 26

C 14.29 3 100 12.50 4 99 25.81 91 33.02 46 45.32 58

D 50.00 13 100 38.09 5 67 48.64 39 47.26 45 47.99 61

E 50.00 1 100 28.57 5 55 56.36 32 52.78 45 49.89 39

Mean 38.57 6.8 100 22.02 4.4 84 41.8 55.2 43.33 45.4 46.29 46.4

The median of the cross-validated classification error, the median of the number of features selected per validation fold (Nfeat), and the number of

cross-validation folds whose classification was significant according to the Wilks’ statistic (NW \ 95%) at the 95% confidence level, are presented

for all tested algorithms (SFS, AGV, RFE, GA, and RELIEF). Data were re-referenced using common-average reference (top table) and

Laplacian spatial filtering (bottom table). The error values in bold represent discriminations that were significant through the bootstrap method

336 Med Biol Eng Comput (2010) 48:331–341
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Fig. 6 for Experiment 2. Considering both re-referencing

methods, the channels F3, C3, P7, P8, and O2 were most

relevant for discrimination in Experiment 1, for Subject A.

Additionally, parietal (e.g., P7 and P8) and occipital

channels (e.g., O1 and O2) were often selected among

subjects in Experiment 1. According to the results of AGV

algorithm (Figs. 5a, c, 6a, and d), the selection frequency

of channels P7, P8, O1, and O2 decreased in Experiment 2.

Although the results of the SFS algorithm demonstrate a

less accentuated decrease on the frequency selection of

such channels between experiments, a decrease in selection

specificity was observed in Experiment 2. While ERPs with

latencies 200 and 400 ms were selected frequently in

Experiment 1 (Fig. 5b, d), no latency was particularly

selected in Experiment 2.

6 ERP waveforms

In order to identify ERPs in response to left and right hand

movement cues, data epochs from 200 ms before the visual

stimulus onset (i.e., left or right arrow) to 800 ms post-

stimulus were analysed. The segments were averaged

across trials per task. An ERP in response to visual stim-

ulation of a hemi-field is lateralized with respect to a

unilateral stimulus (either left or right arrow) [31]. How-

ever, other ERPs with no lateral spatial distribution might

also be detected. The event-related lateralization (ERL) is a

useful transformation often employed to isolate ERP

components that are lateralized and is calculated similarly

to lateralized readiness potential [31]. The lateralized

potentials are calculated for symmetric channel locations

Fig. 3 Feature selection

frequency for discrimination of

left versus right hand movement

imagery calculated by SFS and

AGV algorithms from Subject C

data. Blue represents AGV

results and red represents SFS

algorithm results. Features are

organized as EEG channels in

(a) and (c) and as frequency

bands in (b) and (d). Common-

average re-referenced (CAR)

data were used in (a) and (b).

Laplacian (LAP) re-referencing

method was used in (c) and (d)

Fig. 4 Cross-validated

classification errors (%) of

event-related responses to left

versus right hand cues in both

Experiment 1 and Experiment 2.

Only three subjects (A, B, and

C) participated in both

experiments. Data were

re-referenced using both the

a Laplacian spatial filter and the

b common-average reference
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Fig. 5 Feature selection frequency for the discrimination of event-

related responses to left versus right hand cues, for Subject A, in

Experiment 1. Both AGV(blue) and SFS (red) algorithms results are

presented. Features are organized as EEG channels in (a) and (c) and

as time points in (b) and (d). Common-average re-referenced (CAR)

data were used in (a) and (b). Laplacian (LAP) re-referencing method

was used in (c) and (d)

Fig. 6 Feature selection frequency for the discrimination of event-

related responses to left versus right hand cues, for Subject A, in

Experiment 2. Both AGV (blue) and SFS (red) algorithms results are

presented. Features are organized as EEG channels in (a) and (c) and

as time points in (b) and (d). Common-average re-referenced (CAR)

data were used in (a) and (b). Laplacian (LAP) re-referencing method

was used in (c) and (d)
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according to Eq. 9 (example for the channel pair C4–C3)

where L and R stand for left and right arrows respectively.

Thus, for each arrow, the averaged ERP of an EEG channel

ipsi-lateral to the arrow is subtracted from the averaged

ERP of an EEG channel contra-lateral to the arrow. The

ERL is calculated by averaging the subtractions resultant

for both tasks:

ERL(C4,C3) ¼ ðERP(L,C4)� ERP(L,C3)þ ERP(R,C3)

� ERP(R,C4))/2:

ð9Þ

Event-related lateralization waveforms were calculated

for the symmetric channel pairs C4–C3, P8–P7, and O2–

O1 in Experiment 1 (Fig. 7a) and Experiment 2 (Fig. 7b)

for Subject A. A negative deflection between 150 and

350 ms poststimulus on the ERL waveforms depicts an

ERP that was reactive to stimulus differences. This ERP is

contra-lateral to the stimulus and, in Experiment 1, was

more evident in the channel pairs P8–P7 and O2–O1

compared to the channel pair C4–C3 (see Table 2). The

employment of visual cues balanced in the visual field

dramatically reduced the amplitude and increased the

latency of the deflection in Experiment 2, particularly on

channel pairs P8–P7 and O2–O1. As a result, the decrease

in amplitude found on ERL waveforms from Experiment 1

to Experiment 2 appears to be the main factor contributing

to the classification error increase, as illustrated on Fig. 4.

7 Discussion

This study introduces two novel algorithms to down-select

features for BCI applications. The proposed feature selec-

tion algorithms were compared with three other popular

algorithms to select relevant PRs for discrimination of left

versus right hand movement imagery performance. The

AGV algorithm performed the best among all the other

algorithms that were tested. AGV achieved classification

errors between 12.5% and 38.1% with feature dimension-

ality reductions of more than 95%. Although SFS and RFE

algorithms achieved similar classification accuracies, the

former selected smaller feature subsets. The GA and relief

algorithms ranked next in increasing error. Besides the best

classification accuracy, the AGV algorithm ran six times

faster than the SFS algorithm and eight times faster than

the RFE algorithm.

As a wrapper-type algorithm, iterative selection has

been frequently used for sequential feature selection in BCI

research with promising results [8, 19]. Although the run-

ning time of the classifier is multiplied by a factor of m2 (m

being the number of features), algorithms such as SFS and

RFE are becoming more practical due to the increasing

computational power of laboratory grade computers.

Additionally, such algorithms are straightforward to

implement. The SFS algorithm selects features based on

the Wilks’ statistic which uses the eigenvalues of the

transformation matrix calculated by an LDA classifier.

Instead of assessing a confidence value of the F-statistic as

the standard stepwise stop criterion [7], the number of

features to include in the classification model was opti-

mized in a cross-validation loop. Therefore, this parameter

could be customized for each subject based on the classi-

fication error. The applicability of the SFS algorithm to

more than two data groups is straightforward since it relies

on the LDA classifier ability to generalize for any number

of groups [10].

The proposed AGV algorithm is based on a formulation

of PCA with supervised learning. PCA has been widely

used as a dimension reduction technique in BCI research

[25]. The proposed AGV algorithm uses principal com-

ponents to down-select original features thus reducing

computational complexity. Features are ranked according

to their AGV in a truncated component space. Ranking

algorithms usually order features according to a relevance

Fig. 7 Event-related

lateralization for left versus

right arrows calculated for the

channel pairs C4–C3, P8–P7,

and O2–O1 from Subject A data

in Experiment 1 (a) and

Experiment 2 (b). Data have

been previously re-referenced to

common-average
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criterion but ignore the context of other features [14].

However, in the AGV algorithm, feature ranking implicitly

considers the context of other features since a principal

component is a linear combination of all features. As in the

SFS algorithm, the number of features selected was opti-

mized on a subject-basis in a cross-validation loop. The

AGV score directly generalizes for more than two groups

since the between group covariance matrix can be equally

calculated for any number of groups.

The comparison of the two introduced methods reveals

distinct results. The Wilks’ test of significance revealed

that discriminations calculated through the SFS algorithm

were more significant than the AGV algorithm’s. However,

the AGV achieved lower cross-validation errors than SFS.

As these results suggest, although the feature subsets

computed through the SFS algorithm represented best the

data used to train the classifier, they did not describe pre-

viously unseen data as well as the features calculated by the

AGV algorithm. Moreover, in this study, the SFS algorithm

selected more features than the AGV algorithm. On the one

hand, smaller feature subsets contribute to less complex

classification models which may increase model adapt-

ability to new data. On the other hand, larger feature sub-

sets retain more information about subject-specific EEG

patterns and can benefit from low intertrial variability on

the task-related responses.

In movement imagery discrimination, the frequency

ranges 8–12 and 10–14 Hz on the C3 and C4 EEG channels

were frequently selected by both proposed algorithms which

reflects the reactivity of the ‘‘rolandic mu rhythm’’ to

movement imagery tasks [32]. The discrimination relevance

of some posterior channels (e.g., parietal and occipital

locations) has also been reported earlier and appears related

to the concurrent visual input of instructing cues [1].

Event-related potentials in response to left versus right

movement cues were also discriminated in a trial basis. The

proposed algorithms achieved classification errors between

14% and 33% with feature dimensionality reductions of

more than 90%, when symmetric cues were employed

(Experiment 1). While channels at parietal (e.g., P7 and P8)

and occipital (e.g., O1 and O2) sites were selected fre-

quently among subjects in Experiment 1, such channels

were barely selected or with less specificity in Experi-

ment 2. The investigated ERL waveforms demonstrated a

contra-lateral component between 150 and 350 ms post-

stimulus, prominent at parietal and occipital sites. Our

results demonstrate that this component was modulated by

visual stimuli parameters since it demonstrated higher

amplitudes in Experiment 1 than in Experiment 2 [15], and

demonstrated higher latency in Experiment 2. Similar

parietal and occipital ERPs have been associated with brain

mechanisms dependent on visual spatial attention [21, 31]

and/or movement intention [13, 30]. Although the ampli-

tudes of such ERPs were largely attenuated by the pre-

sentation of balanced arrows, which suggests the

manifestation of a visual spatial mechanism, the residual

direction-congruent potentials on parietal and occipital

channels (Fig. 7b) might also unveil a movement intention

mechanism [30]. The detection of these cue-evoked

potentials was most prominent on P7, P8, O1, and O2

channels and confirms that the subject is indeed fixating

and giving attention to the BCI paradigm. Therefore, this

physiology might be used as a ‘‘gate’’ mechanism of the

classification algorithm to validate the detection of a motor

imagery event.

In conclusion, the proposed feature selection algorithms

demonstrated their value for discrimination of both

movement imagery tasks and cue-evoked responses by

increasing classification accuracy, reducing the number of

required EEG channels, and reducing computation times.

In addition, use of sensory evoked potentials to detect

fixation and attention, and the required causal time lags to

motor intention, offer creative prospects to improve BCI

[13].
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Appendix

This appendix describes the calculation of the discrimina-

tion coefficients a employed in:

Table 2 Latency and amplitude values of the event-related lateralization (ERL) minima for left versus right movement imagery between 150

and 350 ms after stimulus presentation

Experiment C4–C3 P8–P7 O2–O1

Latency (ms) Amplitude (lV) Latency (ms) Amplitude (lV) Latency (ms) Amplitude (lV)

1 234 -1.28 230 -3.04 230 -2.16

2 332 -0.46 281 -1.37 285 -0.71

Results from Subject A were presented for the three symmetric channel pairs C4–C3, P8–P7, and O2–O1 from both experiments
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z ¼ Ya:

Considering that z is the discrimination function and Y is

the feature matrix. Initially, the SVD of the within-group

covariance matrix W is calculated as:

W ¼ USUT:

S is a diagonal matrix, and U appears twice since

covariance matrices are symmetric. B is the between-group

covariance matrix. In order to obtain a better coordinate

system, the vector a in the following Fisher criterion:

a ¼ aTBa

aTWa

is replaced by US�1=2UTv; resulting in:

a ¼ vTUS�1=2UTBUS�1=2UTv

vTUS�1=2UTWUS�1=2UTv

¼ vTUS�1=2UTBUS�1=2UTv

vTv

In general, for a symmetric matrix H, the maximum of

vTHv is attained for the first singular vector v = v1.

Similarly, the maximization of a may be calculated through

the following SVD:

vTUS�1=2UTBUS�1=2UTv ¼ VHVT

The maximum of a is vT
1 VHVT v1 ¼ k1; is the highest

singular value of H. Converting back to original

coordinates a:

a ¼ US�1=2UTv1;

which is equivalent to the first column of US�1=2UTV:
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