
 

 

 

  

Abstract— This study presents a procedure to customize 

mental task discrimination for a specific human subject. Three 

male subjects, between 20 and 30 years old, were submitted to 

4-5 sessions. Each session was composed of 4 blocks of 20 trials. 

Two block types were implemented. One required that the 

subject perform feet and tongue movements. The other block 

required the subject to perform left and right arm movements. 

Subjects were instructed to perform motor imagery as well as 

actual movements. In order to avoid previous assumptions on 

preferable channel locations and frequency ranges, 105 (21 

electrodes×5 frequency ranges) electroencephalogram (EEG) 

features were extracted from the sessions’ data. A linear 

discriminant analysis (LDA) approach was applied to the 

feature set. The dimensionality of the multivariate data set was 

reduced through a discriminant stepwise procedure. Only the 

variables which best discriminated between groups, for a 

specific subject, were used. Those features predicted group 

membership during online feedback sessions with error lower 

than 12%, in each subject best performance. Classification 

errors for training data were very low and were neglected.  

I. INTRODUCTION 

rain-Computer Interface (BCI) enables people to 

control a device with their brain signals [1].  BCI is 

expected to be a very useful tool for impaired people both in 

invasive and non-invasive way. Although subjects using 

invasive approaches usually show evidence of better device 

control than non-invasive users, it is less preferred due to the 

higher risk involved in its research and practical 

implementation. Because the electroencephalogram (EEG) 

does not have enough accuracy to detect user movement 

intention from primary motor cortex, recent studies have 

tried to use 2 distinct approaches. In the operant 

conditioning approach, the training load is on the subject [1]. 

The subject must learn to control a specific rhythm in order 

to produce the desired result on the device that he is 

controlling. The pattern recognition approach is suitable for 

less trained subjects. The user is instructed to perform 

distinct mental tasks that should be identified by the BCI 

system [2]. The features selected to discriminate the mental 
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tasks are usually based on previous assumptions about 

frequency ranges and electrode placements commonly used 

to distinguish such mental tasks. 

A novel approach of multivariate canonical discrimination 

is used in this study to discriminate EEG spatiotemporal 

patterns in response to mental tasks. The aim of this study is 

to test an approach that enables subjects to control a device 

with a minor training load. The subjects that participated in 

this study had no previous BCI experience. This 

discrimination project is intended to be independent, as 

much as possible, of previous assumptions with respect to 

frequency ranges and electrode locations frequently used in 

motor imagery tasks. Because the available variables are 

likely to be much more than it is necessary to obtain a 

satisfactory discrimination, a stepwise method is used to 

reduce data dimensionality. It first selects the variables with 

the highest contribution to group discrimination and then it 

keeps adding or removing other variables to the canonical 

discriminators according to a discrimination criterion. 

Subjects went through sessions conducting mental tasks in 

each session on movement imagery. Other sessions were 

completed with executed movements. Sessions with 

movement execution enable us to determine possible features 

in common with the motor imagery sessions. The 

discrimination quality and group prediction were evaluated 

for all sessions in training data and in feedback sessions.  

II. PROCEDURES 

A. Experimental Design 

Three subjects, 20 to 30 years old, were submitted to 4-5 

sessions of motor imagery tasks and 3 sessions of executed 

movement tasks. Each session had between 3 and 4 blocks of 

20 trials. The subject was instructed to perform one of 4 

tasks in each trial. Two block types were implemented. One 

required that the subject perform feet and tongue 

movements, which we suppose to be 2 easily differentiable 

groups. The other block type required the subject to perform 

left arm and right arm movements, which we believe to be 2 

similar groups. The same number of blocks per session were 

recorded during motor imagery and actual movements. Each 

trial length was 8 s. After the first 2 s a cue warned the 

subject to be prepared and 1 s later, a cue about the required 

mental task was presented to the subject. The subject should 

perform the task during the last 4 s. During sessions with 

feedback, the subject would see a green light on (reward) if 
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its task performance was successful. The feet, tongue, left 

arm and right arm movement tasks were identified as groups 

1, 2, 3 and 4 respectively. The linear discriminant functions 

and their features used to provide feedback to subject, in a 

specific session, were determined from previous session 

data. There was no feedback in session 1. 

Data were recorded using a Labview platform that receives 

data from a BrainProducts® Quickamp through a socket 

connection. This platform extracts the subject specific 

features, provides feedback and graphical interface to the 

subject. Ag/AgCl sintered electrodes were used (Fig. 1).  

As referred above, no electrode locations or frequency 

ranges were pre-selected. The presence of significant artifact 

was the only criterion used to exclude electrodes and 

frequency ranges. In this way, 21 electrodes (F7, F3, Fz, F4, 

F8, FC5, FC1, FC2, FC6, C3, Cz, C4, CP5, CP1, CP2, CP6, 

P7, P3, Pz, P4 and P8) according to the standard 10-20 

system were used for feature extraction. All electrodes were 

referenced to linked earlobes. Data was digitized at 250 Hz 

and passed through a 6
th

 order (48 dB per octave) band-pass 

Butterworth filter of 1-50Hz. Data were visually inspected 

for artifacts after amplitude threshold artifact detection was 

applied. The trials that contained artifacts in the 3 to 8 s 

interval were marked and were excluded from the 

discriminant function analysis. Five frequency bins (10 Hz, 

14 Hz, 18 Hz, 22 Hz and 26 Hz bin central frequencies, 4 Hz 

width bins) were considered for each channel. Each feature 

is the ratio of the pre-filtered EEG signal power in one of 

these frequency ranges to its power in the broadband 

frequency range 1-30 Hz, for the 3-8 s interval. Since 21 

channels and 5 frequency bins were selected, 105 variables 

(features) were available for discrimination. 

 

 
Fig. 1.  Subject EM and the recording set-up. 

    

B. Canonical Discriminators 

Multivariate canonical discrimination was developed by 

Fisher [3] in order to quantify the static taxonomic 

classification of plant species. A more stable approach to this 

computation was recently implemented for spatiotemporal 

EEG pattern discrimination [4]. 

In our study, discrimination was performed on a sequence 

of measurements, assembled into a matrix Y where the rows 

are in units of time (4 s intervals) and the columns are the 

multivariate power ratio calculated from the measurements. 

The Y columns, the variables selected for discrimination, 

were determined in the procedure detailed in subsection C. 

Y1, Y2, Y3 and Y4 were generated from matrix Y, and 

canonical discriminators generated to distinguish Y1 from Y2, 

and Y3 from Y4 were determined. Covariance matrices were 

calculated for the whole dataset Ψtotal and within each group 

Ψwithin. The covariance between group means is defined as 

(1). 

 
For any linear combination  

 

 

the separation of groups implies that the Ψbetween should be 

emphasized with respect to Ψwithin . 

A modern and stable approach to implement this optimal 

separation of groups is based on a coordinate system change 

[4]. The singular value decomposition (SVD) 
T

within USUΨ = enables us to define a new 

variable 1 2 Tv US U b= . Converting back to b-coordinates, the 

optimal b, called the first canonical variate, is defined as  

 
The m canonical variates bi,…,bm are the m columns of 

1/ 2 TUS U V−  and they provide the coefficients of m canonical 

discrimination functions in (2). V and Λ (diagonal matrix 

with the eigenvalues of the transformation) are obtained 

using the following equation 

 
After finding the discrimination functions, 3 tests were 

done to check discrimination quality. Each multivariate 

observation vector Y has a transformed vector z with mean u 

and normal p-variate distribution f(z). Prior probabilities πj 

were determined by the ratio of observations in group j to the 

total observations (N), i.e. 
j j

N Nπ = . The posterior 

probability πjz in (5) is the probability that the data of a given 

value z came from group j of n groups. 

 

The exp[q(z)] , for ( ) 1/2 lnT T

j j j jqz u z u u π= − + , was used as a good 

approximation of πjf(z) [5]. The highest πjz value for j=1,…,4 

was the predicted group membership for posterior 

calculations.  

A robust method for quality testing is to leave one 

multivariate data point out of the discriminant function 

classification and then test it for predicted group 
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classification given its posterior probability. In order to test 

the significance of discrimination, we used a normal theory 

method that analyses the eigenvalues of Λ above. After 

calculating the log likelihood ratio as
1
ln(1 )

m

ii
LLRS N λ

=
= +∑ , 

where λi are the diagonal values of Λ, the Wilks’ statistic was 

used as [ ]expW LLRS N= − . A good discrimination yields 

large eigenvalues and W becomes small. Small eigenvalues 

and W values close to 1 are typical for poor discriminations. 

W is chi-square distributed and confidence limits were 

calculated for discrimination significance [5]. On the other 

hand, the W statistic is based on the assumption of normal 

distribution of data variables, which may not be the case. A 

bootstrap method was therefore used as an alternative 

method of testing discrimination quality. It randomly 

permutes the labeling of each multivariate data point (to 1, 2, 

3 or 4 groups) and re-tests the goodness of fit [4]. The 

permutation number was limited to 1000.   

 

C. Features Selection 

A discriminant stepwise method was used to decrease data 

dimensionality [5]. As mentioned above, there are 105 

variables available to apply in the linear discriminator. 

Although the addition of each new variable improves the 

discrimination (W value decreases) on the training data set, 

the preferred criterion for this discriminative stepwise 

procedure was the leave-one-out error rate, since it is a 

classification error of data out of the training data set, as well 

as test data.  

 The first step of this procedure is to select the first 

variable to start with. The canonical function that best 

discriminates the multivariate data observations (for 2 

groups) for all 105 variables is determined. The likelihood 

between the canonical discriminant function and each 

variable is given by their correlation. From (2), it can be 

calculated using the correlation between each column of Y 

and the transformed observations z (Z just has one column 

since it is a 2 group discrimination). The largest absolute 

value of the correlation corresponds to the first selected 

variable. Then canonical functions were determined for the 

training data set considering only the first selected variable. 

Afterwards, 3 options are possible. Iteratively, the criterion 

was compared with canonical functions generated from: 1) 

adding an extra variable from the remaining variables set; 2) 

replacing a previously selected variable by one from the 

remaining variables set, or 3) removing a previous selected 

variable. The action from these 3 options, which produces 

the largest decrease in leave-one-out error, was actually 

performed. This procedure was run iteratively until no 

additional criterion improvements were possible. Once this 

procedure was finished, we have an optimized variable set 

and new canonical discriminant function available to predict 

group membership on test data (feedback sessions). 

III. RESULTS 

Table I presents the canonical functions with the best 

classification errors on training data as well as their 

discrimination quality evaluation. From Table I, we can 

highlight the essentially perfect discriminations for training 

data, for all 3 subjects, in feet vs. tongue movements, since 

both plug-in and leave-one-out error rates were 0% with W 

values much lower than the 99% confidence interval limits. 

Significance of the discrimination is also shown by the 

bootstrap method. The features extracted from the stepwise 

method for all subjects are frontally oriented since the 

variables with the highest coefficients correspond to the 

channels located in the frontal regions of the skull. The main 

EEG component selected for FF is in the 12-16Hz range, 20-

24Hz for EM, and for JC, it is predominantly in the 16-20Hz 

frequency range. 

 The online classification errors in group membership 

prediction for motor imagery tasks with feedback are 

presented in Table II and for tasks with actual movements 

are presented in Table III. Since we are evaluating BCI 

online classification errors for 2 groups (discrimination 

between 1 and 2 or between 3 and 4), 50% is the expected 

value for non-existent control of the subject. In Table II, 

subjects are ordered from left to right in decreasing order of 

overall performance. Subject FF reached classification errors 

lower than 18% for both group pairs, the subject EM had 

errors around 22% for group pairs 1-2 and barely controlled 

the BCI for group pair 3-4. Subject JC had almost no control 

for both group pairs. 

The classification errors for tasks with movement, Table 

III, are slightly lower. The subject FF reached classification 

errors lower than 10% and 15% for group pairs 1-2 and 3-4 

respectively. Subject EM performed perfectly for groups 1-2 

(0% error) and significantly worse for groups 3-4. Subject JC 

had good control for groups 1-2 and did less well for groups 

3-4. 

 
TABLE I 

OFFLINE PERFORMANCE OF THE CANONICAL FUNCTIONS WITH BEST ONLINE 

PERFORMANCE 

Subject(Groups) Channel(Freq) Coef W PIER (%) LOOER (%) Online error (%)

C3(8-12) -10,4305 0,1642

F8(8-12) 16,3038 0,7359
a

F7(12-16) 39,5900 0,7915
b

0,2825

0,7627
a

Cz(20-24) 41,0651 0,8259
b

P4(8-12) -8,5656

FC5(8-12) 17,2910

FC5(16-20) 72,3496 0,6116
a

F7(8-12) -7,1256 0,6589
b

JC (1-2)

Canonical Functions with best online performance

FF (1-2) 0,00 0,00 10,00

0,00 0,00 11,11

EM (1-2) 0,00 0,00
F4(20-24) -65,6901

0,1219

0,00

 Groups 1-2 means a block of trials for feet vs. tongue movements tasks 

respectively. Channel(Freq) field refers to the channels and frequency bins 

delimited from low cut-off to high cut-off frequencies. Coef field stands for 

the variables coefficients in the canonical function. W is the Wilks’ statistic 

values. aLimit value for 99% confidence interval of W significance. 
bSignificance level for W from bootstrap test. PIER field means plug-in 

error rate and LOOER means leave-one-out error rate. 

 

 

 



 

 

 

TABLE II 

ONLINE ERROR CLASSIFICATION FOR MOTOR IMAGERY TASKS 

Groups 1-2 Groups 3-4 Groups 1-2 Groups 3-4 Groups 1-2 Groups 3-4

1 1

2 2 45,00 46,67 47,56 40,32 36,51 42,86

2 3
a a

23,68 31,25
a a

3 4 20,00 53,75 28,75 42,00 30,00 35,90

3 5 15,00 17,50 21,88 37,78 35,00 50,00

Error classification for motor imagery tasks (%)

day# session#

no feedback

FF EM JC

 
 Groups 1-2 means a block of trials for feet vs. tongue movements tasks 

and 3-4 means left vs. right arms movement tasks respectively. FF, EM and 

JC are the subject’s identification codes. 
aValues not available because the respective subject was not submitted 

to that specific session. 

 
TABLE III 

ONLINE ERROR CLASSIFICATION FOR TASKS WITH MOVEMENT 

Groups 1-2 Groups 3-4 Groups 1-2 Groups 3-4 Groups 1-2 Groups 3-4

1 1

3 2 53,33 38,33 12,50 52,50 31,67 50,00

3 3 10,00 15,00 0,00 28,21 11,11 30,00

Error classification for tasks with movement (%)

day#

no feedback

session#
FF EM JC

 
Groups 1-2 means a block of trials for feet vs. tongue movements tasks and 

3-4 means left vs. right arms movement tasks respectively. FF, EM and JC 

identify subjects. 

IV. DISCUSSION AND CONCLUSIONS 

In offline analysis, the canonical functions in Table I, 

show that the most discriminative channels, for feet vs. 

tongue movements, are localized frontally and the frequency 

ranges deviate from the µ-rhythm 8-12Hz range used for 

motor imagery experiments [6]. Additionally, the plug-in and 

leave-one-out classification error rates, in Table I, are low, 

and each group’s transformed data points are tightly 

clustered about their group mean (Fig. 2). The online 

classification errors of the canonical discrimination 

functions, in Table III, are low enough to permit a 2 group 

BCI implementation.  

During sessions with feedback, the online results for 

motor imagery tasks tend to improve with sessions (Table 

II), with the exception of subject JC for session 5. This lack 

of control could be due to inadequate features extracted from 

the previous session. Subjects FF and EM had reasonable 

control for both group pairs in session 5, otherwise subject 

JC achieved rudimentary or non-existent control for any 

group pair. Since all the three subjects confessed to have 

some difficulty to concentrate on motor imagery tasks, we 

believe there exists an optimal subject-dependent interval for 

this procedure to acquire the feature set that better describes 

the subject’s task performance. Furthermore, the canonical 

functions with best online performance for each subject, in 

the last row of Table III, were tested in sessions with 

movement tasks and for feet vs. tongue movements. This 

supports the expected best performance on tasks with actual 

movements when compared to motor imagery tasks. From 

both Table II and Table III, groups 1-2 were easier to 

discriminate than groups 3-4.  

The results from tasks with online feedback show that 

error improvements are better between 2 consecutive 

sessions, on the same day, than for sessions from different 

days. This suggests 2 sources of variability: that the subject’s 

mental state changed from day to day or that electrode 

locations varied due to cap application (the cap was applied 

just once for consecutive sessions on the same day). Further 

sessions of motor imagery tasks should be performed to 

check if the classification error reduction is consistent. Since 

the classification was done once per trial, the output update 

rate of a BCI system based on this study would be 4s. This 

time frame is not sufficient for many real-time systems, and 

we are working to reduce this time lag in future work. 

 

 
Fig. 2.  The graph represents the canonical discriminator function for 

groups 1 vs. 2 (feet vs. tongue movements) from subject EM, detailed in 

Table I. The discrimination was performed on horizontal axis (Z). Groups 

are vertically level shifted for interpretation simplicity. Large symbols 

represent group means. 
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