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Abstract—Current non-invasive Brain-Computer Interface (BCI) 
designs use as much electroencephalogram (EEG) features as 
possible rather than few well known motor-reactive features (e.g. 
rolandic µ-rhythm picked from C3 and C4 channels). 
Additionally, motor-reactive rhythms do not provide BCI control 
for every subject. Thus, a subject-specific feature set needs to be 
determined from a large feature space. Classifier over-fitting is 
likely for high-dimensional datasets. Therefore, this study 
introduces an algorithm for feature down-selection on a subject 
basis based on the across-group variance (AGV). AGV is 
evaluated in comparison with three other algorithms: recursive 
feature elimination (RFE); simple genetic algorithm (GA); and 
RELIEF algorithm. High-dimensional data from 5 healthy 
subjects were first reduced by the algorithms under experiment 
and then classified on the alternative right hand or foot 
movement imagery tasks. AGV outperformed the other tested 
methods simultaneously selecting the smallest feature subsets. 
Effective dimensionality reduction (as low as 8 features out of 
118) with high discrimination power (as high as 90.4) was best 
observed on AGV’s performance. 

Keywords-feature selection; neural signal processing; brain-
computer interface 

I.  INTRODUCTION 
Brain-Computer Interfaces (BCI) enable movement 

independence for the physically disabled by translating their 
thoughts into device commands. Electroencephalogram (EEG), 
as control signal, is usually preferred to invasive recordings 
due to its ease of acquisition. However, EEG patterns produced 
in response to movement imagery performance are subject-
dependent and the translation algorithm needs to be trained on 
a subject basis. An effective implementation of BCI requires a 
previous calibration session (no feedback is provided to the 
subject) whose data is employed to train the translation 
algorithm. The set of features (e.g. event-related 
desynchronizations, spectral band power, movement-related 
potentials) extracted from the EEG channels may be larger than 
the subset that optimally translates movement imagery 
performance for each subject. Therefore, the feature set 
dimensionality should be reduced by determining the subject-
specific feature subset to include in the classification model. 
Two main methodologies have been adopted in BCI research. 
The transformation of original feature spaces into lower 
dimensional spaces has been often tested [1]. An alternative 

methodology is feature down-selection which produces a 
subset of original features that is most relevant to discriminate 
subject performance. The greatest advantage of the latter 
methodology is the effective reduction of BCI computational 
complexity. The methods proposed in previous studies to 
down-select feature sets are commonly categorized as wrapper 
or filter methods based on dependence on a learning technique. 
Wrapper methods use the predictive accuracy of a pre-selected 
classifier to evaluate a feature subset. Among the state-of-the-
art exemplars, the recursive feature elimination (RFE) [2] and 
genetic algorithms (GA) [3] are popular in BCI research. Filter 
methods separate feature selection from classifier training and 
produce feature subsets independent of the selected classifier. 
The RELIEF algorithm  is often used as a filter method [4]. 

The current work introduces a filter algorithm based on a 
formulation of principal component analysis that 
accommodates the group structure of the dataset. This 
algorithm uses the concept of across-group variance (AGV) to 
reduce dataset dimensionality. The proposed algorithm, as well 
as RFE, GA and RELIEF, was tested on EEG data collected 
during the imagery of right hand and foot movements 
performed by five subjects. Both dimensionality reduction 
ability and discrimination power were assessed for comparison. 

II. DATA 
The data set IVa from the BCI competition III [5] was 

recorded from 5 healthy subjects and used for algorithm 
performance comparison. These data were recorded during 4 
calibration sessions. The subject was instructed to perform 
right hand and foot movement imagery for 3.5 s periods. Data 
were recorded from 118 EEG channels at positions of the 
extended international 10/20-system. Although signals were 
digitized at 1000 Hz with 16 bit (0.1 μV) accuracy, a 100 Hz 
version of the data (by picking each 10th sample) was used for 
further analysis. 

The EEG signals were filtered differently for each subject. 
The band-pass filter ranges 8-30 Hz, 8-14 Hz or 15-30Hz were 
used depending on the best group membership prediction 
achieved for each subject. The signal epoch was defined from 
the cue presentation instant (i.e. 0 s) to the end of the imagery 
period (i.e. 3.5 s after cue presentation). The epoch data was 
assessed in 1 s long windows with 0.5 s overlap. In each time 
window, the sum of the squared filtered signals was 
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calculated. The feature matrices had 280 samples available 
with 118 features. 

III. METHODS 
The original feature matrix Xn×p has samples (n) in rows and 

features (p) in columns. The risk of classifier over-fitting to the 
training data is larger for high-dimensional datasets. 
Additionally, just a few features (popt) are generally relevant for 
discrimination and the optimal feature subset is subject-
dependent. Thus, a feature down-selection algorithm is 
required in order to promote robust and effective 
discrimination by reducing data dimensionality. 

A recently developed algorithm, as in [6], is compared with 
three other algorithms in common use: RELIEF [4]; recursive 
feature elimination (RFE) [2]; and genetic algorithm (GA) [3]. 
A linear discriminant classifier was employed to predict group 
membership for all algorithms but RFE. Instead, a standard 
support vector machine (SVM) was used. The feature down-
selection algorithms were tested in a 10-fold cross-validation 
scheme since the average of the folds’ prediction accuracy is 
indicative of the classifier’s online performance. The 10-fold 
cross-validation scheme was run 10 times in order to 
compensate for performance variability (100 classification 
error values were calculated). Besides the 10-fold validation 
loop, the cross-validation also comprises an inner 10-fold loop 
that partitions the training dataset into new training and 
validation subsets. The inner loop optimized algorithm 
parameters such as the number of features to select (popt). 

A. Across-Group Variance (AGV) Algorithm 
The principal components (PCs) are linear projections of 

the features onto the orthogonal directions that best describe 
the dataset variance. The component orthogonal matrix Un×c (c 
is the number of PCs) is calculated through singular value 
decomposition of X. Although the PCs are already organized 
by decreasing order of the total variance accounted for, this 
order is optimized for orthogonality rather than discrimination 
between groups. Additionally, in the presence of group 
structure, the variance information provided by a component 
comprises two parcels as in (1): a function of the sample 
distances to their respective group mean; and a function of the 
distances between the respective group means. 

ibetween
T

iiwithin
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ii vvvv Ψ+Ψ=λ  (1) 

Ψwithin is the pooled covariance matrix, Ψbetween represents the 
between-group covariance matrix and is calculated through the 
total covariance (Ψ) decomposition in (2). λi is the eigenvalue 
correspondent to the ith eigenvector vi. 

betweenwithin Ψ+Ψ=Ψ   (2) 

In a discrimination context, only the second parcel in (1) 
comprises useful variance information. Therefore, the distance 
between groups given by the ith component, normalized by its 
total variance, provides a relative measure to calculate the 
across-group variance (AGV) as in (3). 
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T
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In order to take the data group structure into account, the 
principal components were ordered according to the AGV 
score in (3), instead of the eigenvalues λ that account for the 
total variance. 

The dimensionality reduction results from the truncation of 
the c principal components previously ranked as in (3). The 
truncation criterion is a cumulative sum percentage of the 
descending ordered AGV scores and was defined to take one of 
the following values: 60%, 70%, 80% or 90%. These threshold 
values are commonly used for component truncation. The 
principal components k that met the truncation criterion 
compose a truncated version of the component matrix (Un×k 
with k < c) which is a lower dimensional representation of the 
original feature space, more suitable for group discrimination.  

In order to determine the features which resemble the 
retained components with minimal information loss, a modified 
version of the spectral decomposition property is used to 
calculate an across-group covariance matrix (ΨAGV) as in (4).  
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Note that AGVi is used instead of λi on the spectral 
decomposition equation. Each diagonal value of ΨAGV 
represents the variance of a particular feature accounted for the 
k retained principal components and measures feature 
discrimination ability. A list with the p features in descending 
order of discrimination ability is determined. Finally, the top 
listed popt features comprise the optimal subset. 

B. RELIEF 
The RELIEF algorithm is a filter method that assigns a 

relevance value to each feature producing a ranking that 
permits the selection of the top ranked features according to a 
previously chosen threshold or criterion [4]. The relevance 
value, or feature weight (W), is iteratively estimated according 
to how well a feature distinguishes among instances that are 
near each other. In each iteration, a sample x is randomly 
selected and the weight of each feature is updated from the 
difference between the selected sample and two neighbouring 
samples: one from the same group H(x) (named nearest hit) and 
another from a different group M(x) (named nearest miss). The 
weight of each feature p is updated as in (5). 

pppppp xMxxHxWW )()( −+−−=
 (5) 

The weights are calculated along n (number of available 
training samples) sequential iterations. Iteratively, the feature 
with the lowest weight was removed and the classification 
accuracy of the resulting subset evaluated by a linear 
discriminant classifier. The selection stops when popt features 
are left. 
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C. Recursive Feature Elimination (RFE) 
The recursive feature elimination (RFE) algorithm based on 

a support vector machine classifier is a wrapper method that 
uses the feature weights of the SVM training process to 
perform backward feature elimination [2]. A linear kernel 
machine was used with parameters set to Matlab® 
Bioinformatic Toolbox defaults. RFE ranking criterion 
║ Wp

2 ║ for feature p is calculated from (6) which depends on 
the weighted sum of support vectors that define the separation 
between groups as optimized by the SVM for every sample n. 

∑=
n

nnn xyW α
  (6) 

αn is the sample weight, xn is the p-dimensional training sample 
and yn is the group label. The samples with non-zero weights 
are the support vectors. The features with the lowest ranking, 
thus contributing less to group separation, are removed 
iteratively. This procedure stops when the optimum subset size 
(popt) is reached. 

D. Genetic Algorithm (GA) 
This is a wrapper method that uses a simple genetic 

algorithm to search the space of possible feature subsets. The 
genetic algorithm is a global search method based on the 
mechanics of natural selection and population genetics and has 
been successfully applied to BCI problems [3]. It starts with the 
generation of an initial random population, where each 
individual (or chromosome) encodes a candidate solution to the 
feature subset selection problem. The individual is constituted 
by various genes represented by a binary vector of dimension 
equal to the total number of features. A fitness measure is 
evaluated for each individual after which, selection and genetic 
operators (recombination and mutation) are applied. In this 
study, the classification accuracy of a linear discriminant 
classifier was the fitness measure. Starting with conventional 
values, the parameter calibration was based on empirical tests 
executed beforehand and were set to the following: the 
population size was 30, the number of generations was 50; the 
selection rate was 0.5; elite children (chromosomes that pass 
unchanged, without mutation, to the next generation) was 2; 
the mutation rate was set to 0.05 and the crossover probability 
to 0.5. The selection of chromosomes to be recombined was 
done by tournament selection (with tournament size equal to 
2). Crossover and mutation were uniform. The most frequently 
selected features within the inner loop up to the number of 
features popt were tested on validation data. 

IV. RESULTS 
A newly developed algorithm and three other popular 

algorithms in BCI were tested for feature down-selection in 
high dimensional datasets that are publicly available [5]. The 
performance measures used for comparison were the cross-
validation error for 100 folds, its standard deviation and the 
average number of features selected. According to table I, the 
proposed algorithm (AGV) achieved the best average 
performance among the tested algorithms. AGV achieved the 
lowest average error and standard deviation for the smallest 
subsets. RFE, GA and RELIEF algorithms ranked next in error 

increasing order. For subject AL, RFE achieved lower 
classification error than AGV. However, the former selected 
more features than the latter. Since the AGV ranking algorithm 
is a filter method, it was alternatively tested with a SVM 
classifier (i.e. the same employed in RFE) for validation. The 
error average was 6.96 % thus, lower than RFE’s and still 
maintaining a small number of features selected. The statistical 
confidence of the classification results was assessed by a paired 
t-test with a confidence level of 95%. A significant difference 
between the methods was found (p-values << 0.05). 

The classification error vs. number of features average 
curves for subject AL are presented in Figure 1 and further 
illustrates the comparison results (see Table I). Although AGV 
and RFE algorithms achieve comparable minimum 
classification errors, the former selects subsets considerably 
smaller than the latter. RELIEF obtained the highest 
classification errors. GA did not produce a sequential selection 
curve due to its intrinsic search design. GA produces 
generation dependent feature subsets rather than nested ones. 

AGV was also tested on the training/validation data splits 
provided for the BCI competition (see [5]) in order to evaluate 
algorithm ability to deal with small training sets. The amount 
of data for classifier training is in descending order on table II. 
As for the results on Table I, the best classification results were 
achieved for subjects AL and AY. Note that values on Table I 
result from datasets with 252 training samples. The number of 
features selected decrease with the available training data. 

V. DISCUSSION AND CONCLUSIONS 
The feature subsets calculated by AGV achieved highest 

prediction accuracy (either with linear discriminant or support 
vector machine predictors), at the 95% level of confidence, 
with the smallest number of features (see Table I). These 
results were further illustrated for subject AL (Figure 1) by the 
cross-validation error curves. The minimum classification error 
achieved by backward elimination of task irrelevant features 
(or forward addition of task relevant features) establishes the 
optimum number of features to be selected. All the remaining 
features are deemed task relevant. Thus, among the tested 
algorithms, AGV’s error curve seems most suitable for feature 
down-selection since it achieved the best accuracy with the 
fewest features. RFE ranked second best in our algorithm 
comparison. 
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Figure 1.  Mean error vs. number of features average curve, for subject AL, 
calculated by the across-group variance with a linear discriminant classifier 
(AGV), recursive feature elimination (RFE) and RELIEF algorithms. The 

marker popt defines the optimum subset size calculated by AGV and separates 
relevant from irrelevant features. 
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TABLE I.  RESULTS COMPARISON OF THE TESTED FEATURE DOWN-SELECTION ALGORITHMS 

aError is the mean classification error; bSD is the error standard deviation; popt is the mean number of features selected 

The lowest classification error for each subject was printed in bold 

 

TABLE II.  CLASSIFICATION RESULTS FOR AGV FEATURE SUBSETS 
CALCULATED FROM DATASETS WITH DIFFERENT PROPORTIONS OF TRAINING 

DATA 

Subject Traininga Validationa Error (%) popt 
AL 224 56 10.7 24 
AA 168 112 30.4 14 
AV 84 196 29.1 7 
AW 56 224 31.7 9 
AY 28 252 16.3 2 

Average - - 23.6 11 
acolumn values represent the number of samples employed either for Training or Validation procedures 

 

Although RFE’s classification errors were comparable to 
AGV’s for two subjects (AA and AL) the subset sizes were 
largely different. On average, RFE selected 90 features out of 
118, while AGV only kept 19. As suggested in [7], SVM tends 
to calculate similar weights (W) for highly correlated (e.g. 
redundant) features. Thus, these features are eliminated or kept 
simultaneously during the RFE selection. As depicted on 
Figure 1, RFE finds the minimum error early on the backward 
elimination. The following error raise is slow which indicates 
that the features being eliminated are not highly relevant. On 
the contrary, the slope of the AGV error increase is much 
higher. SVM achieves low classification errors even for large 
feature sets (see Figure 1) and seems to perform well with 
many redundant features. However, large datasets increase the 
risk of classifier over-fitting and decreases its generalization 
ability. Additionally, as claimed in [8], the latter elimination of 
redundant features might promote premature elimination of 
more relevant ones and mislead the subset optimization. On 
the other hand, AGV ranks each feature based on its covariance 
with the truncated component space rather than its covariance 
with other features. Therefore, linear correlations between 
features are implicitly considered but not determinant for 
feature selection. Although, both RFE and AGV were able to 
order features by relevance, the latter seems more capable of 
dealing with redundant features. Moreover, as expected for 
filter methods, AGV ran 8 times faster than RFE on average. 

The genetic algorithm ranked third best on comparison. 
Surprisingly, the GA tested never achieved classification 
results comparable with AGV’s. Moreover, on all tested 
subjects it doesn’t seem to accomplish an effective feature 
reduction and the generalization error is high, thus suggesting 
that a premature convergence phenomenon is occurring. 

As expected, RELIEF achieved the poorest classification 
accuracy. Unlike AGV, RELIEF evaluates feature relevance 

independently of other features and thus is incapable of dealing 
with redundant features. Another drawback is that RELIEF is 
highly susceptible to select irrelevant channels in the presence 
of outliers on noisy channels. 

The competition datasets (Table II) led to an error increase 
as a consequence of less training data available. However, 
AGV appears able to reduce the subset size when less task 
information is available thus avoiding over-fitting. 

In this study, the across-group variance algorithm 
outperformed other popular methods in feature down-selection 
for BCI. AGV seems a valuable solution to decrease 
prosthesis computational complexity for the physically 
disabled. 
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Subject AGV RFE GA RELIEF 

 Errora 
(%) SDb popt

c Error 
(%) SD popt 

Error 
(%) SD popt 

Error 
(%) SD popt 

AA 25.1 7.2 21 27.4 9.5 103 31.6 9.7 58 34.3 9.9 55 
AL 9.6 6.0 37 7.6 5.3 76 13.6 5.8 58 16.0 6.6 53 
AV 28.5 7.4 9 33.2 7.8 78 37.6 10.0 58 36.4 9.2 62 
AW 19.9 7.1 20 29.8 7.4 93 28.7 8.6 59 30.2 8.3 70 
AY 9.2 4.8 8 14.3 6.4 101 17.2 6.9 58 21.8 7.8 89 

Average 18.5 6.5 19 22.5 7.3 90 25.7 8.2 58 27.7 8.3 66 
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