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Abstract

The design, fabrication and measured characteristics of a bulk-micromachined tu

Fabry-Perot MicroInterferometer (FPMI) for the visible spectral range are prese

The FPMI is formed by two parallel 40 nm thick silver mirrors supported by a 300

low-tensile stress silicon nitride membrane with a square aperture (side leng

2 mm) and initial cavity gap of 1.2 µm. One of the mirrors is fixed, the other is und

tension on a movable Si frame, which is electrostatically deflected, using severa

tributed electrodes, to control cavity spacing and mirror parallelism. Perform

achieved is: high flatness of the mirrors (λ/10 for the visible part of the spectrum), low

control voltages (<21 V for 450 nm deflection) and simple fabrication. 
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1 Introduction

Micro-Electro-Mechanical-Systems (MEMS) have, amongst many other applications,

used to combine micro-mechanical and micro-optical elements on the same d

Significant improvements in performance, functionality, reduction of size and cost of op

systems can be achieved by merging micro-optics, microelectronics and micromec

(micro-opto-electro-mechanical devices).

MEMS-based Fabry-Perot optical resonators usually consist of a vertically integ

structure composed of two mirrors separated by an air gap. Wavelength tuning is ac

by applying a voltage between the two mirrors, resulting in an attractive electrostatic

which pulls the mirrors closer [1].

Fabry-Perot filters reported in the literature are usually designed for use in the near-in

region (wavelengths 1.3 and 1.55 µm), because of interest in multi-mode optical fib

communication [2] [3] [4]. The fabrication is generally based on the deposition or grow

many layers (10 to 27) to form the DBR (Distributed Bragg Reflector) mirrors. There

the fabrication of these devices is complex and costly. In this work, we present a new 

mechanical device, which features simple fabrication, allows operation in the visible sp

range [5] and is integrable with photodetectors and electronics in silicon. Fig. 1a show

Fabry-Perot microinterferometer structure and Fig. 1b a cross-section of the device

main goal of this Fabry-Perot structure is to achieve an integrated spectrometer with 

spectral range of operation. 

Suitable applications for the FPMI are: wavelength demultiplexers, chemical analys

optical absorption, colour determination and emission line characterization. 

applications as sensors of pressure and acceleration are feasible.
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2 Design of the Fabry-Perot microinterferometer

The Free Spectral Range-FSR (the frequency range between two adjacent transmitted

and the Full-Width Half-Maximum-FWHM of a FPMI can be independently controlled. 

cavity gap sets the FSR and the mirrors reflectivity controls the FWHM. The transmi

peaks can be made very sharp by increasing the reflectivity of the mirror surfaces.

The finesse (ratio between FSR and FWHM) of a Fabry-Perot device depends, at giv

flectivity of the mirrors, entirely on the parallelism [4]. Therefore, geometrical form, ben

distances, deflection, stress, fatigue and flatness of a diaphragm based on a low stres

nitride membrane/Si frame were simulated in order to study the mechanical behaviou

movable mirror, which is part of the FPMI.

The dimensions and materials used are set by optical constraints. Moreover, the eff

silicon nitride internal stress, stress concentration in the frame corners, zero-pressure

and compressive stresses complicate the prediction of the load-deflection relationship

fabrication compared to a planar diaphragm.

The input data for FEM simulations are the optical constraints and material prop

(Young’s modulus-E, internal stress-σ, Poisson’s ratio-ν). For a given structure type, a high

er-performance load-deflection characteristic can be obtained using a circular membra

However, this work is restricted to square diaphragms, which can be fabricated using 

bulk-micromachining. Different diaphragm lateral dimensions (typically between 3x3 m2

and 8x8 mm2), membrane thicknesses (from 150 nm to 1 µm), frame sizes (from 1.8x1.8

mm2 to 4x4 mm2) and square apertures dimensions (between 200 µm to 2 mm) were simu-

lated. These values are mostly set by technology constraints. The etching of silicon in

is very anisotropic: the {100} planes and {110} planes are selectively etched, while the

rate in the <111> direction is much lower [7]. As a result, when etching a square mem

in a (100)-cut wafer (thickness 525 µm) in KOH, side-walls are formed at an angle of 54.7
3
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with respect to the surface. Without any special measures, the frame convex corners

overetched [6] [8]. To prevent this undesirable effect, corner compensation structure

been added at the convex corners of the silicon frame.

The values used in FEM simulations for low stress LPCVD silicon nitride were: E=360

σ=0.125 GPa (material data extracted from the fabrication process used) [9].

The Finite-Element-Methods (FEM) simulations in ANSYS 5.3 (Fig. 2) predict exce

flatness [6] of the movable mirror in the whole range of required deflections (0-460 nm

the control voltages of 0-21 V). 

The membrane was modeled by a three-dimensional shell element (very small thickne

the silicon frame by a three-dimensional solid. In the first approach an adaptive meshin

used. The precision of the results was improved by trial and error. The membrane re

tensile stress was simulated by defining a thermal-expansion coefficient and apply

temperature load.

A thin-film optics software package (TFCalc 3.2.5) was used to perform optimizatio

mirror layer thickness and composition [10]. Fig. 3 shows simulated transmittance for 4

Ag/300nm-SiN mirrors with mirror spacing as a parameter. The Fig. 3 clearly shows a 

peak for cavity gaps of 300 nm and 500 nm with a FWHM of 10 nm. A finesse o

(FSR=100 nm and FWHM=5 nm) is achieved with the cavity gap of 1µm.

3 Fabrication 

Silver was selected as the mirror material, because of its high reflectivity (>90%) ove

entire visible spectral range (Fig. 4). The main disadvantage of silver - poor long

stability (tendency to tarnishing) - is expected not to be critical in microsystems, a

dimensions allow protection by hermetic sealing in the package. 

The mechanical and optical properties of low-stress silicon nitride enable fabricati
4
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large-area membranes (>10 mm) with excellent flatness, a refractive index non-unifo

less than 10-4 [12] and optical absorption losses below 0.5% [11].

The symmetric structure enabled fabrication of upper and lower element in one single

(100 mm double-side polished), using a 5-mask process. Firstly, 400 nm recesses are

using LOCOS. Subsequently, a 300 nm low-stress (<0.15 GPa) LPCVD silicon nitride

is deposited and protected by a 300 nm LPCVD poly-Si layer. Then, PECVD oxi

deposited on a wafer front-side with thickness (0.3 - 1µm) corresponding to the require

initial resonance cavity gap width. Fig. 5 presents the complete schematic fabric

sequence of the device.

The PECVD-oxide/poly-Si stack is patterned to form spacers between upper and botto

for later bonding. The 300 nm Al interconnect and control/sensing electrodes (deposi

sputtering) are buried in 400 nm recesses to increase the initial spacing of the electrode

avoid sticking during operation.

The wafer back-side is patterned to prepare windows for anisotropic KOH etching. S

mirrors are evaporated and patterned using lift-off on the wafer front-side. The aniso

KOH etching (33 wt% KOH solution at 85°C) is performed in a sealed holder to protec

Ag mirrors. To facilitate dicing of the finished wafer into the individual dies, deep V-sha

trenches are formed during anisotropic KOH etching. Afterwards, the bottom die is mo

on a printed-circuit-board (PCB), the upper die is attached and fixed using glue

alignment between bottom and upper dies is achieved by temporary inserting conica

into the pre-etched holes (see two holes at the corners in Fig. 6). Devices with dif

square apertures (side length ranges from 200 µm to 2 mm) were fabricated. A photograp

of a fabricated FPMI is shown in Fig. 6.
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4 Experimental results

The optical response was measured using a 5.1 mm2 photodiode (Hamamatsu typ

S1336-5BQ) and HP 4142B DC source/monitor controlled by an HP 9000/700 compu

100 W tungsten lamp and Oriel 77250 monochromator with a ruled grating were used a

source.

The control voltages required for tuning the FPMI resonance cavity width and adjuste

mirror parallelism were set manually. Firstly, the parallelism between the two mirro

obtained through analysis of the interference pattern projected. Secondly, electr

actuation is applied to set the cavity gap width, while maintaining parallelism. Fig. 7 s

an example of the measured spectral response in transmittance (cavity gap ~500 nm

FWHM of 12 nm, which is in reasonable agreement with simulation (Fig. 8). A measure

in reflectance was done without adjustment of the parallelism between the two plate

300 nm-SiN/40 nm-Ag mirrors and an air gap of about 1µm)  and the result is presented i

Fig. 9. In these measurements a focused beam with a diameter of about 100µm was used.

5 Conclusions

The microinterferometer presented is intended for use in an on-chip integ

microspectrometer (which includes FPMI, integrated photodiode and read-out electro

with tuning over the entire visible spectral range with high spectral resolution. The mat

and device properties enable a FPMI with a finesse exceeding 30 and FWHM smalle

3 nm (with 50 nm silver mirrors).

It is difficult to achieve complete parallelism by manual adjustment of the voltages ap

to the control electrodes. Therefore, future version of the device will include a servo-co

system (with distributed sensing electrodes for control of the cavity spacing), allo

automatic adjustment of the mirror parallelism and improving the response time.
6
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Figure 1a: Fabry-Perot MicroInterferometer (FPMI).

Figure 1b: Cross-section of the  micromachined F-P optical filter.
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Figure. 2: FEM simulation of the SiN-membrane/Si frame deflection.

Figure 3: Simulated transmittance for different cavity gap widths.
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Figure 4: Optical reflectance of Ag, Al and Au.

Figure 5: Schematic fabrication sequence.
13



 silver
Figure 6: Photograph of the fabricated FPMI.

Figure 7: Optical transmittance measured for an air cavity gap of about 500 nm and
mirrors with thickness of 40 nm.
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Figure 8: Simulated transmittance of a FPMI using 300 nm-SiN/40 nm-Ag mirrors wit

air gap of 500 nm.

Figure 9: Measured reflectance of a FPMI using 300 nm-SiN/40 nm-Ag mirrors with a

gap of about 1 µm (without adjustment of parallelism).
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