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An array of Fabry-Perot optical-channels for biological fluids analysis
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Abstract

This paper describes a biosystem (biological system) used to measure the concentration of biochemical substances in urine, serum,
plasma or cerebrospinal fluid. Rather than just one channel, it comprises 16 optical-channels that enable the measurement of the con-
centration of 16 different biochemical substances. An array of 16 optical filters based on Fabry-Perot thin-films optical resonators has
been designed. Each optical-channel is sensitive in a single wavelength with a full-width-half-maximum (FWHM) of 7 nm. The filter
fabrication requires only four masks, used with different etch time. A commercially available band-pass optical filter with a band-pass
wavelength in 450–650 nm is used. The biosystem requires only a white light source for illumination due the use of selective optical
filters.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Spectrophotometric analysis (the study of the interaction
of electromagnetic radiation with chemical compounds)
is one of the most commonly used analytical techniques
for biological fluids analysis in clinical diagnostics. This
technique is used to determine the concentration and/or
amount of a particular compound in biological fluids
samples[1]. Usually, the samples need to be sent to a
laboratory for spectrophotometric analysis, and the re-
sults become available after several hours or days. The
need for rapid and on-line measurements led to the de-
velopment of biosystems with the fluidic, detection and
readout systems integrated in a single-chip[2]. The advan-
tages associated with shrinking clinical analysis systems
include improved efficiency with respect to sample size,
integration, automation, response times, analytical perfor-
mance, laboratory safety and costs. Previously developed
biosystems on-a-chip with absorbance detection require a
wavelength dependent light or waveguides inserted into the
biosystem for illumination[3,4]. Illumination using only
a white light source requires the use of selective optical
filters.

∗ Corresponding author. Tel.:+351 253510190; fax:+351 253510189.
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2. Design of the 16 optical-channels array

2.1. Background of the biosystem application

The application of the particular biosystem presented here
is the measurement of the concentration, by optical absorp-
tion, of 16 different biochemical substances in human’s flu-
ids. However, many of the analytes1 of interest for clinical
analysis do not have chromophores that absorb light in a use-
ful part of the visible range. Specific chemical reactions are
available (reagents) to transform these analytes into colored
products that do have adequate absorbance[1]. In addition,
the concentration of biochemical substances is measured by
using a mixture of a reagent with an analyte sample. The
measurement method has the following characteristics: (1)
the intensity of the color produced by the mixture is directly
proportional to the concentration of the biochemical sub-
stances in analysis; (2) the absorption spectra of the mixture
show a maximum peak at a specific wavelength; (3) each
mixture presents a linear behavior within the interest con-
centration range.

A biosystem to measure the concentration of biochemical
substances in biological fluids, by optical absorption, was
previously implemented[4]. Its operation was successfully

1 An analyte is the substance (element, ion, compound or molecule)
being analyzed.

0924-4247/$ – see front matter © 2004 Elsevier B.V. All rights reserved.
doi:10.1016/j.sna.2004.03.077



G. Minas et al. / Sensors and Actuators A 115 (2004) 362–367 363

30%

40%

50%

60%

70%

80%

90%

100%

350 400 450 500 550 600 650 700

Wavelength (nm)

T
ra

ns
m

itt
an

ce
 (

%
)

Rise of uric acid 
concentration

Fig. 1. Measured transmittance spectra for different uric acid concentra-
tions [4].
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Fig. 2. Schematic structure of the biosystem for an individual optical-
channel in cross-section.

demonstrated in uric acid concentration detection (Fig. 1).
However, the measurements were carried out with a wave-
length dependent light source (monochromatic light).

2.2. Complete structure

An optical filter placed on the top of the biosystem allows
the use of only a white light source, giving portability to the
biosystem.Fig. 2 shows schematically the cross-section of
the biosystem for an individual optical-channel. It is com-
posed of a glass die and a silicon die. The glass die contains
the fluidic channels (Fig. 3) and the optical filters. The sili-

Fig. 3. The fluidic channels. It comprises three fluidic channels. Channel A
is needed to obtain the baseline reference and to calibrate the light source.
Channel B allows the mixed solution analysis (reagent plus sample).
Channel C is needed to calibrate the biochemical substance concentration
(well-known biochemical calibrator).
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Fig. 4. Fabry-Perot filter.

Fig. 5. An artist impression of the 16 optical filters (4× 4 array) and the
commercial band-pass filter. Each of the Fabry-Perot cavities is tuned to
transmit in different spectral band.

con die contains the photodetectors and readout electronics.
A commercially available band-pass optical filter on the top
of the biosystem is used to avoid the non-visible spectrum.

The device operation is based on optical absorption in a
well-defined wavelength of the visible spectrum. The im-
pinging spectrum is filtered by the optical filters to a single
wavelength, and the intensity of the selected spectral com-
ponent transmitted through the fluid is measured using an
underlying photodetector. The optical-channel is composed

Table 1
The 16 biochemical substances that can be analyzed in the biosystem[1]

Biochemical substance Biological
fluid

Absorption spectra
maximum peak (nm)

Uric acid U, CSF 495
Cholesterol S 500
Glucose S 505
Glutamic oxalacetic/pyruvic

transaminase
S, P, CSF 510

Creatinine U, S, P 515
Magnesium S 520
Aldolase S 525
Bile acids S 530
Blood urea nitrogen S, P 535
Salicylate S 540
Hemoglobin P 545
�-Glucuronidase S, U 550
Urea nitrogen U, S, P 555
Bilirubin S 560
Leucine aminopeptidase U 565
Calcium S 570

Note: U: urine, S: serum, P: plasma, CSF: cerebrospinal fluid.
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Fig. 6. Simulated transmittance vs. wavelength for the 16 optical fil-
ters array. The Fabry-Perot layer stack is 20 nm Al/SiO2/40 nm Ag.
The SiO2 layer thickness changes from 637 to 742 nm in 7 nm
increments.

by a Al/SiO2/Ag layer stack functioning as a Fabry-Perot
optical filter with an optical detector underneath (a CMOS
standard photodiode).

The Fabry-Perot filter consists of two parallel mirrors with
a resonance cavity in the middle (Fig. 4) [5]. The equation
λq = 2nd shows its operation principle, wheren is the re-
fractive index of the cavity medium,d the cavity length,λ
the incident wavelength andq the interference order (q = 1,
2, 3, . . . ). The optical filters use metallic mirrors instead
of high-performance dielectric mirrors due to the simplic-
ity of their fabrication: only three layers are deposited and
the wavelength selection is performed by changing only the
thickness of the SiO2 layer. Silver and aluminum have been
selected due to their high reflectivity at visible wavelengths
[6]. Aluminum is the most suitable material in terms of fab-
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Fig. 7. (a) The four masks used in the SiO2 etching process. The crosses
are alignment marks; (b) the position of each filter in the array. The filter
number 1 (λ = 495 nm) is for uric acid, the filter number 2 (λ = 500 nm)
is for cholesterol, and so one according toTable 1.

rication compatibility (despite its higher absorption losses).
Silver exhibits poor long-term stability (tendency to tarnish)
[7]. However, that biosystem is sealed, using the commer-
cial band-pass filter, to avoid the oxidation of the silver layer
caused by the environment. A special glue is used around
the Fabry-Perot optical filter for adhesive bonding the glass
commercial band-pass filter to the glass die. It also could
be used an intermediate layer of polysilicon to obtain the
glass-to-glass anodic bonding.

Rather than just one optical filter it has been developed a
16 optical filters array based on Fabry-Perot thin-films op-
tical resonators. The complete 4× 4 array, schematically
shown inFig. 5, allows the measurement of the concentra-
tion of 16 different biochemical substances in human’s flu-
ids. These substances are described inTable 1. Each of the
optical filters is tuned for a specific wavelength (third col-

Fig. 8. The SiO2 etching process. (a) applying the first mask, two different
SiO2 thickness are obtained; (b) applying the second mask, four different
SiO2 thickness are obtained; (c) applying the third mask, eight different
SiO2 thickness are obtained; (d) applying the fourth mask all the 16 SiO2

thickness are obtained.
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Fig. 9. SEM photograph showing the cross-section of one of the
Fabry-Perot filters (SiO2 thickness= 637 nm).

umn ofTable 1). The thickness of the SiO2 layer determines
the tuned wavelength.

2.3. Optical simulations of the Fabry-Perot filters

A thin-film optics software package (TFCalc 3.4) was
used for the structural optimization of the optical filters.

Fig. 10. Photograph of the packaged biosystem.

Simulation results show that a 20 nm Al/SiO2/40 nm Ag
layer stack (Ag on top) is the best option for the opti-
cal filters in terms of optical characteristics and feasibil-
ity. The SiO2 layer thickness changes between 637 and
742 nm with 7 nm steps. The simulated transmittances for
all the 16 optical filters show that each of the channels is
sensitive to a single spectral band, with a FWHM= 7 nm
(Fig. 6).

3. Fabrication of the 16 optical-channels array

The filter fabrication starts with the deposition of a 20 nm
Al layer by evaporation. Then a 742 nm thick SiO2 layer is
deposited by chemical vapor deposition (equal to the maxi-
mum cavity length). In subsequent plasma etching steps, for
which a mask is used and each of them with different etch
time (seeFig. 7a), the total thickness of the SiO2 layer is
decreased from 742 to 637 nm, in 7 nm steps, forming the
filters number 16 (λ = 570 nm) to 1 (λ = 495 nm), respec-
tively. Fig. 7bshows the position of each filter in the array.
The SiO2 etching process is visualized inFig. 8. The fab-
rication ends with the deposition of a 40 nm Ag layer. A
SEM photograph presenting the cross-section of one of the
channels (filter number 1) is shown inFig. 9. The 16-filter
fabrication requires only four masks and four etching steps.
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Fig. 11. Measured transmittance for a single channel for the same uric
acid concentrations measured inFig. 1 (λ = 495 nm).

The filters can be easily tuned to different spectral bands by
adjusting only the thickness of the SiO2 layer without affect-
ing the biosystem layout.Fig. 10shows a photograph of the
complete device. The holes and channels were drilled and
milled, respectively, by using a computer numerically con-
trolled (CNC) machine. The glass die is glued to the CMOS
chip.

4. Experimental results

The 16 optical filters are now being fabricated. Meanwhile
a single channel was previously fabricated and its operation
demonstrated in the measurement of uric acid concentra-
tion (λ = 495 nm). The reagent used in those measurements
was the infinityTM uric acid reagent from Sigma–Aldrich
[8]. A 200 W quartz tungsten halogen lamp was used as the
white light source for biosystem illumination. The photo-
diode current was measured using a Keithley 487 picoam-
meter. A monochromator is also used in order to obtain the
photodiode current versus the wavelength. The optical filter
is composed of the 20 nm Al/637 nm SiO2/40 nm Ag layer
stack. Optical spectra measurements on the biosystem show
that the single channel is sensitive to its specific wavelength
(λ = 495 nm), with a FWHM of 7 nm (Fig. 11). These mea-
surements, when compared with the measurements without
the optical filter (Fig. 1), allow concluding that it can be used
only a white light source for the biosystem illumination.
However, Fabry-Perot filters using metallic mirrors cannot
provide both high-transmittance and low FWHM due to the
optical absorption in the metal layers. FromFig. 11 it can
be seen that with a FWHM= 7 nm the transmittance of the
highest concentration fall off from 35% (seeFig. 1) to 4.5%.
This can be avoided using high-performance dielectric mir-
rors. However, the filters fabrication will be significantly
more complex.

5. Conclusions

The reported biosystem offers a new approach for clinical
analysis due to the measurements of the concentration of 16

different biochemical substances in human’s fluids, with the
same device. This performance is obtained with an array of
16 optical filters based on Fabry-Perot thin-films optical res-
onators. Moreover, the 16 optical-channels array allows the
use of only a white light source for illumination. Therefore,
the measurements can be performed in any place and the re-
sults of those measurements become available immediately.
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