
  

  

Abstract — This paper reports a comparative study of 
feature extraction methods regarding cardiac arrhythmia 
classification, using state of the art Hidden Markov Models. 
The types of beat being selected are normal (N), premature 
ventricular contraction (V) which is often precursor of 
ventricular arrhythmia, two of the most common class of 
supra-ventricular arrhythmia (S), named atrial fibrillation 
(AF), atrial flutter (AFL), and normal rhythm (N). The 
considered feature extraction methods are the standard linear 
segmentation and wavelet based feature extraction. The 
followed approach regarding wavelets was to observe 
simultaneously the signal at different scales, which means with 
different level of focus. Experimental results are obtained in 
real data from MIT-BIH Arrhythmia Database and show that 
wavelet transform outperforms the conventional standard 
linear segmentation. 

I. INTRODUCTION 
The electrocardiogram (ECG) is the record of the 

electrical activity of the heart and provides fundamental 
information about its electrical instability being the most 
significant biosignal used by cardiologists for diagnostic 
purposes. Atrial fibrillation (AF) is perhaps the most 
common arrhythmia encountered in clinical practice, 
affecting about 0.5-1% of the general population. AF is not 
only related to frequent symptoms and reduced quality of 
life but also constitutes a major risk factor for stroke and 
mortality from cardiovascular and all other causes [1]. AF 
pathology is usually diagnosed based on ECG analysis. 

 Normally continuous monitoring over an extended period 
of time is required in order to increase the understanding of 
patients’ cardiac abnormalities. Such situations require 
continuous monitoring by the physicians or alternatively the 
aid of automated arrhythmia detection equipment, which can 
be able to identify different types of arrhythmias. 

This problem of cardiac arrhythmia detection can be 
viewed as a pattern recognition problem, since it is possible 
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to identify a finite number of different patterns 
(arrhythmias).  

Hidden Markov Models have been successfully applied to 
pattern recognition problems in applications spanning 
automatic speech recognition [2], image segmentation [3], 
ECG modeling [4] and cardiac arrhythmia analysis [5]. The 
most common approach regarding HMM training is finding 
the stochastic distribution that best fits the data. Usually this 
data is derived from the waveform from some type of signal 
processing usually known as feature extraction method. The 
most classical technique for feature extraction in the HMM 
framework is perhaps the linear segmentation where the 
ECG is segmented in straight line segments. More recently 
advanced signal processing techniques as Fourier 
Transform, Linear Predictive Analysis, Lyapunov Functions 
[6] and Multivariate Analysis (MA) have been used in order 
to overcome some limitations of the linear segmentation. 
Multivariate Analysis allows observing the signal at various 
scales emphasizing some hidden particularities not viewed at 
other scales. Wavelet Analysis is perhaps the most common 
form of multivariate analysis. Recently Wavelet Analysis 
was been successfully combined with Hidden Markov 
Models (HMMs) especially regarding ECG segmentation 
[11]. 

This paper reports the performance of two types of 
extraction feature methods evaluated under the conventional 
HMMs framework. The considered feature extraction 
methods are the classical linear segmentation [4], [7] where 
the ECG signal is linearized in order to discard some linear 
redundancy and the wavelet transform where the signal is 
simultaneously viewed at different scales.  

The wavelet transform has the advantage over 
conventional techniques that time/frequency representation 
can be more accurately modeled by decomposing the signal 
in the corresponding scales. When the composition level 
decreases in the time domain it increases in the frequency 
domain providing zooming capabilities and instantaneous 
characterization of the signal [8]. This time/frequency 
representation which preserves both global and local 
information seems to be more adequate than linear 
segmentation for local characterization of the signal. 

The baseline system is a Bakis or left-to-right Continuous 
Density Hidden Markov Models (CDHMMs) with a 
Gaussian Mixture Model (GMM) associated to each model 
transition. The ECG signal is previously sliced in singular 
pulses by using the Pan-Tompkins [9] algorithm and each 
pulse class is modeled by a six state model, modeling the Q-
S, S-T, T, T-P, P and P-Q events. 
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Experimental results from the MIT-BIH Arrhythmia 
Database using more than 1500 training pulses and 3000 
testing pulses show that the wavelet transform is more 
adequate to extract information from de ECG signals than 
the standard linear segmentation procedure. 

II. ECG FEATURE EXTRACTION  
ECG observations were obtained from the standard linear 

segmentation and wavelet based extraction methods. 

A. Linear Segmentation 
In the standard linear segmentation, observations were 

obtained from the segmentation of the original signal with 
straight line segments which goal is to decrease the amount 
of linear redundancy, as described in [4]. In [4] it is 
suggested for features a bi-dimensional vector where the 
components are respectively the amplitude of the starting 
point and the duration of the line segment. However, as 
reported in [7], these features are very sensitive to baseline 
wander, DC drift and heart rate variation. DC drift can be 
cancelled by using differential amplitude between the 
starting and ending points, and heart rate variability can be 
attenuated by normalizing the line segment duration by the 
R-R interval, as reported in [7]. The R-R interval is 
computed by using the Pan-Tompkins algorithm [9].  

 

B. Wavelets 
The wavelet transform (WT) is a signal representation in a 

scale-time space, where each scale represents a focus level 
of the signal and therefore can be seen as a result of a band-
pass filtering.  

Given a time-varying signal x(t), WTs  are a set of 
coefficients that are inner products of the signal with a 
family of “wavelets” obtained from a standard function 
known as “mother wavelet”.  In Continuous Wavelet 
Transform (CWT) the wavelet corresponding to scale “s” 
and time location “τ” is given by 

 
 
                       (1)      
   

 
where ψ(t) is the mother wavelet, which can be viewed as a 
band-pass function. The term      ensures energy 
preservation. In the CWT the time-scale parameters vary 
continuously   
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where the asterisk stands for complex conjugate. Equation 
(2) shows that the WT is the convolution between the signal 
and the wavelet function at scale “s”. Therefore the shape of 
the mother wavelet seems to be important in order to 

emphasize some signal characteristics, however this topic is 
not explored in the ambit of the present work. 
For implementation purposes both “s” and “τ” must be 
discretized. The most usual way to sample the time-scale 
plane is on a so-called “dyadic” grid, which means that 
sampled points in the time-scale plane are separated by a 
power of two.  

As the scale represents the level of focus from the which 
the signal is viewed, which is related to the frequency range 
involved, then digital filter banks are appropriated to break 
the signal in different scales (bands). If the progression in 
the scale is “dyadic” the signal can be sequentially half-band 
high-pass and low-pass filtered.  

The output of the high-pass filter represents the detail of 
the signal. The output of the low-pass filter represents the 
approximation of the signal, for each decomposition level, 
and will be decomposed in its detail and approximation 
components at the next decomposition level, and the process 
proceeds iteratively in a scheme known as wavelet 
decomposition tree, which is shown in figure 1.  After the 
filtering half of the samples can be eliminated according to 
the Nyquist’s rule, since the signal now has only half of the 
frequency. 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

 
This very practical filtering algorithm yields as Fast 

Wavelet Transform (FWT) and is known in the signal 
processing community as two-channel subband coder [10]. 

One important property of the DWT is the relationship 
between the impulse responses of the high-pass (g[n]) and 
low-pass (h[n]) filters, which are not independent of each 
other and they are related by  

 
 
                       (3) 

 
where L is the filter length in number of points. Since the 
two filters are odd index alternated reversed versions of each 
other they are known as Quadrature Mirror Filters (QMF). 
Perfect reconstruction requires, in principle, ideal half-band 
filtering. Although it is not possible to realize ideal filters, 
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Figure 1. Wavelet decomposition tree. 
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under certain conditions it is possible to find filters that 
provide perfect reconstruction. The most famous ones were 
developed by Ingrid Daubechies and they are known as 
Daubechies wavelets. In the ambit of this work only 
Daubechies wavelets with 2 vanishing moments (db-4) were 
used.  

III. WAVELETS ANALYSIS OF ECG  
The multiresolution analysis based on the DWT can 

enhance small differences when the signal is simultaneously 
observed at the most appropriate scales.   Figure 2 shows the 
result of the application of the DWT one cycle of a normal 
ECG. From the figure we can observe that d1 level 
(frequency ranges of 90-180Hz) emphasize the high 
frequency content of complex QRS when compared with P 
and T waves . D2 and d3 levels show clearly that other 
waves of small frequencies not seen at d1 scale are just 
appearing.  

The features used in the scope of this work are 
simultaneous observations of d1 and d2 scales, therefore the 
observation sequence generated after the parameter 
extraction is of the form O=(o1, o2, …oT) where T is the 
signal length in number of samples and each observation ot 
is a bi-dimensional vector. Each element of the observation 
vector is derived from the IWT of the selected scale.   
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Figure 2. One ECG pulse viewed at scales d1, d2 and d3.   

IV. HIDDEN MARKOV MODELS 
Hidden Markov models are a doubly stochastic process in 

which the observed data are viewed as the result of having 
passed the hidden finite process (state sequence) through a 
function that produces the observed (second) process. 

In an HMM the goal of the decoding or recognition 
process is to determine a sequence of hidden 
(unobservables) states (or transitions) that the observed 
signal has gone through. The second goal is to define the 
likelihood of observing that particular event, given a state 
sequence determined in the first process. 

In the pattern recognition paradigm each class of beat is 
represented by a separate model and after decoding, the 
class for the which the probability (likelihood) of occurrence 
is greater is selected. Since the ECG is characterized by a 

time sequence waves occurring almost always in the same 
order which reflects the sequential activity of the cardiac 
conduction system an HMM structure where the states are 
connected in a left-to-right order was adopted. In [4] it is 
shown that a full connected HMM is eventually more 
appropriate for HMM modeling since the beat sequence 
reproduced by this kind of HMM is almost perfect. Figure 3 
shows the model structure adopted for the several 
pathologies considered in the ambit of this paper.  

 
 
 
 

 
 

Figure 3. A left-to-right HMM with 6 states 
 
The next issue is the choice of the number of Gaussian 

mixtures. For continuous models (CDHMMs), it has been 
found that it is more convenient and sometimes preferable to 
use diagonal covariance matrices with several mixtures, 
rather than fewer mixtures with full covariance matrices. 
The reason is the difficulty in performing reliable re-
estimation of the off diagonal components of the covariance 
matrix from the necessarily limited training data. The 
HMMs in this work use five Gaussian mixtures per 
transition. 

The output probability density function, which defines the 
conditional likelihood of observing a set of features when a 
transition through the model takes place, is usually a 
multivariate Gaussian mixture for the most engineering 
applications involving hidden Markov models. These 
probability density functions are associated with the 
transitions which configures a Continuous Density Hidden 
Markov Models (CDHMMs) Mealy machine and are given 
by 
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Where c is the number of components in the Gaussian 
mixture,  G(…) stands for bi-variate normal distribution 
with mean vector  and covariance matrix for the ith mixture 
component and transition ut given respectively by iut ,µ  and  

iut ,Σ . As the components of observation vector are assumed 

iid G(…) function in equation (4) is simply the product of 
five Gaussian functions. The mixture coefficients iut

b ,  

satisfy, for each transition ut , to  
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so that, equation (4) is a probability density function. 

In our experiments the observations were modeled by five 
components in the Gaussian mixture (C=5) in order to fit 
best data with multimodal distributions.  
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The Estimation of HMM parameters from a set of 
representative training data can be done by using the Baum-
Welch algorithm which is based on the decoding of all the 
possible state sequence, or alternatively by using the Viterbi 
algorithm which is based on the most likely state sequence 
[2]. The adopted training was the MLE procedure in the 
Viterbi framework, which goal is to maximize iteratively the 
following probability density function 

 
                ( ) ( ) )/(,// λλλ SPSYfYf =               (6) 
 

where Y is the observation sequence, S the most likely state 
sequence and λ the set of HMM parameters. The model 
reestimation formulas can be found in [2]. This usual 
parameter estimation technique maximizes iteratively the 
model parameters that best fit the training data. 

V. EXPERIMENTAL RESULTS 
Experimental results were evaluated by using the MIT-

BIH Arrhythmia Database. Normal (N) and premature 
ventricular contraction (V) beats, in atrial fibrillation (AF), 
atrial flutter (AFL) and normal (N) rhythms were selected. 

The training set contains the 121, 122, 221 and 222 
records and the testing set contains the 105, 112, 121, 122, 
210, 221 and 222 records of the MIT-BIH arrhythmia 
database. For the training set 722 normal (N) pulses of 121 
(N rhythm) and 122 (N rhythm), 682 normal and premature 
ventricular contraction (V) pulses of 221 (AF rhythm) and 
197 normal pulses of 222 (AFL rhythm) records were used. 
The testing set contains 2065 pulses of 105, 112, 121 and 
122 records, 1011 pulses of 210 and 221 records and 246 
pulses of 222 record, which means that data for training and 
testing purposes was obtained from different patients, which 
is normally known as patient-independent analysis. Tables 1 
and 2 show respectively the HMM based pulse classification 
system using respectively features from linear segmentation 
and wavelets.  
 

Table 1 – The confusion matrix associated to linear 
segmentation 

 
 AF N AF V AFL N N N Total Pr+ 
AF N 868 0 0 335 1203 0.72
AF V 0 114 0 0 114 1 
AFL N 7 0 246 13 266 0.92
N N 22 0 0 1717 1739 0.98
Total 897 114 246 2065 3322  
Sensitivity 0.96 1 1 0.83   

 
Both feature extraction methods use the same 

dimensionality since only two first scales of the DWT were 
used in order to increase the accuracy regarding comparative 
performance. The row labeled “Total” means the total 
number of beats used in experiment for each class listed in 
the corresponding column. Both MLII and V1 signals were 
used each one with their own HMM. A pulse is considered 
classified if the score from both models agree, otherwise the 
pulse is considered wrong. Regarding the linear 

segmentation algorithm various initial parameters were tried, 
however the best performance was obtained wish ε = 0.01, 
max = 1 and k = 2 [4].   
 

Table 2 – The confusion matrix associated DWT 
 

 AF N AF V AFL N N N Total Pr+ 
AF N 864 0 0 0 864 1 
AF V 0 114 0 0 114 1 
AFL N 0 0 237 0 237 1 
N N 33 0 9 2065 2107 0.98
Total 897 114 246 2065 3322  
Sensitivity 0.96 1 0.96 1   

 
Comparing table 1 and table 2 it is clear that wavelet 

transform leads to a better characterization of ECG records, 
at least concerning HMM classification. 

VI. CONCLUSION 
The main conclusion is that the wavelet transform 

outperforms the linear segmentation regarding beat 
classification. In fact Multivariate Analysis seems to have 
higher potential than linear segmentation regarding spectral 
content signal analysis especially in relative quiet 
environments.  
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