
  

  

Abstract—Brain-Computer Interfaces (BCI) based on event 

related potentials (ERP) have been successfully developed for 

applications like virtual spellers and navigation systems. This 

study tests the use of visual stimuli unbalanced in the subject’s 

field of view to simultaneously cue mental imagery tasks (left vs. 

right hand movement) and detect subject attention. The 

responses to unbalanced cues were compared with the responses 

to balanced cues in terms of classification accuracy. Subject 

specific ERP spatial filters were calculated for optimal group 

separation. The unbalanced cues appear to enhance early ERPs 

related to cue visuospatial processing that improved the 

classification accuracy (as low as 6%) of ERPs in response to 

left vs. right cues soon (150-200 ms) after the cue presentation. 

This work suggests that such visual interface may be of interest 

in BCI applications as a gate mechanism for attention 

estimation and validation of control decisions. 

I. INTRODUCTION 

rain-Computer Interfaces (BCI) transform brain signals 

into control signals [1]. A non-invasive BCI typically 

uses electroencephalogram (EEG) signals recorded via 

electrodes placed on the scalp. Some implementations of this 

interface rely on the detection of sensory-motor rhythms in 

response to movement imagery tasks in order to control a 

cursor on the screen [2]. Event related potentials (ERP) in 

response to mental tasks or attention shift events may be 

alternatively used to write words on a virtual speller [3]. 

Besides movement imagery detection accuracy, the 

identification of an idle or rest state has been of great 

concern in BCI research [4]. The identification of an idle 

state may prevent the BCI system from performing undesired 

actions when the subject is not concerned with movement 

imagery. Previous studies have detected an idle brain state 

(i.e. no command) in addition to movement imagery brain 

responses [4], [5]. In this study, we suggest a virtual 

implementation of idle state detection by estimating subject 

attention through visually evoked potentials (i.e. VEP). The 

spatial arrangement of visual stimuli on a screen affects VEP 

amplitudes and latencies [6]. Additionally, shifting visual 

attention between different regions on a screen elicits visual 

evoked potentials that may be interpreted as indexes of 
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visual spatial selective attention [7]. The possibility of 

utilizing specific visual interfaces to enhance such VEPs has 

been used to estimate drivers’ attention [8] and select buttons 

on a screen [9]. The estimation of subject attention (i.e. idle 

vs. active state) during BCI operation may be used to 

validate subject control decisions. 

 

This study proposes the use of movement imagery cues 

(i.e. arrows) commonly used in calibration sessions to 

simultaneously cue the subject on required movement 

imagery and estimate subject attention. While arrows 

centered in the subject’s visual field cued the subjects in a 

first experiment, center-out asymmetric arrows were 

employed in a second experiment. Event-related potentials 

(either visually evoked or movement-related) in response to 

left vs. right cues were classified. The results for both 

experiment conditions were compared. Spatial filters that 

enhanced the discrimination of cue-evoked responses were 

optimized for each subject. 

II. METHODS 

A. Paradigms 

Five healthy human subjects, three male and two female, 

ages 20 to 30, participated in the study. Two different 

experiments were run, each presenting a paradigm where 

arrows indicated the imagination tasks to be performed (left 

vs. right arm movement imaginations). 

 

The subjects were seated approximately 60 cm from a 

computer screen. The timeline of the trials was the same for 

all experiments and is illustrated on Fig. 1. Each trial started 

with a fixation cross, which remained on screen for the entire 

trial period, at the center of which the subjects were 

instructed to focus their gaze and attention. An arrow 

indicating the direction of the imagination task appeared 3 

seconds after the cross was made visible. The arrow 

remained on screen for 4 seconds, i.e. for the duration of the 

imagination period which started at the appearance of the 

arrow. Then, both the cross and the arrow disappeared, 

leaving a blank screen. The length of the inter-trial period 

was randomly set between 3 and 4.5 seconds to avoid subject 

adaptation. 
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The paradigms differed in arrow type and its position in 

the subject’s visual field. Fig. 2 illustrates examples of the 

visual cues for each of the two paradigms. In Experiment 1 

(Fig. 2a) the arrows appeared centered on a fixation cross 

(balanced in the subject’s visual field), where both ends of 

the arrow were equidistant from the cross’s origin and had 

both a head and a tail. In Experiment 2 (Fig. 2b) the arrows 

appeared in a non-centered fashion (unbalanced in the 

subject visual field) with the total length of each arrow 

appearing on just one side of the cross’s origin and having 

only a head, but no tail. 

 

 
Two sessions of Experiment 1 and two sessions of 

Experiment 2 were conducted in a total of 4 sessions per 

subject. Each session consisted of 2 experimental runs of 40 

trials with an equal number of each type of cue being 

presented (i.e. 20 left arrows and 20 right arrows).  

B. Recording and Pre-processing 

EEG signals were recorded from 19 electrodes (FP1, FP2, 

F7, F3, Fz, F4, F8, T7, C3, Cz, C4, T8, Pz, P3, Pz, P4, P8, 

O1 and O2), according to the 10-20 system, all referenced to 

the linked earlobes. Data were sampled at 256 Hz and 

band-pass filtered between 0.5 and 60 Hz with a fourth order 

zero phase Butterworth filter. An ocular artifact removal 

algorithm was applied to the data [10] to eliminate eye 

movement related artifacts. Scalp current density (SCD) was 

estimated from raw filtered EEG data to enhance activity due 

to superficial cortical sources and minimize activity from 

deeper sources [11]. SCD was estimated for each electrode 

location by multiplying the laplacian transformed scalp 

potentials by the negative of the scalp tissue conductivity as 

in (1). 

 

LSCD ∆−= 1                 (1) 

 

 ∆ is the scalp conductivity and L is the laplacian 

transform of the scalp potential. The peripheral frontal and 

temporal electrodes (i.e. FP1, FP2, F7, F8, T7 and T8) were 

also excluded from subsequent analyses to further reduce 

remaining eye movement artifacts that could misguide the 

calculation of the spatial filters and classification.  

C. Epoch Extraction 

 Data were first low-pass filtered to 8 Hz. Trials (500 ms 

pre-stimulus to 600 ms post-stimulus) with gradients larger 

than 40 µV between 2 consecutive time points, absolute 

amplitudes larger than 50 µV or maximum-minimum 

amplitude differences of 80 µV were considered artifacts and 

flagged for removal. The epochs were extracted from a 

window starting 200 ms before the stimulus up to 600 ms 

after the stimulus. The mean value of the pre-stimulus period 

was then subtracted from the post-stimulus activity for 

baseline correction. To reduce the computational complexity 

the data were finally downsampled to 20 samples per second. 

Each final epoch thus contained 12 points representing the 

0-600 ms post-stimulus activity. All epochs previously 

flagged for artifacts were excluded from further processing 

and analysis. 

D. Spatial Filtering and Classification 

With the purpose of determining the EEG electrodes that 

best represent the ERPs in response to stimuli on a subject 

basis, spatial filters suitable for ERP discrimination were 

optimized for each subject according to the discriminative 

spatial patterns approach proposed in [12]. For n electrodes 

available, the spatial filters f (n-rows column vector) can be 

optimally determined from the training data by maximizing 

criterion J in (2) which can be interpreted as a measure of 

separation between two groups of feature vectors. Each 

group represents the EEG epochs recorded in response to 

either left or right cues. SB (n×n matrix) and SW (n×n matrix) 

represent the between and within group scatter matrices 

respectively. 
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The eigenvectors, as columns of V (n×n matrix) and the 

eigenvalues are the solution of the generalized eigenvalue 

problem SB / SW where the eigenvectors may be used as 

spatial filters and the eigenvalues represent the 

discriminative power of the filters.  

 
Fig. 1. Example of trial structure and timeline with unbalanced 

arrows (Experiment 2): (a) start of trial with fixation cross (on 

screen for 3 s); (b) imagination period with example of arrow cue 

overlaid on cross (on screen for 4 s); (c) inter-trial period with blank 

screen (random period of 3 to 4.5 s). 

 
Fig. 2. Visual cues employed for right and left movement imageries at 

3 s after trial start for: (a) Experiment 1 with balanced arrows 

(sessions 1 and 2); (b) Experiment 2 with unbalanced arrows 

(sessions 3 and 4). 
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The new feature vectors, as columns of Yi (n×m matrix: 

for m epoch sample points), result from the spatial filtering 

of the data epochs Xi (n×m matrix) by the determined filters 

as calculated in (3). The subscript i indicates the epoch. 

 

0VXVY ++++==== i
t

i                (3) 

 

The unidimensional projections (rows of Yi) are unbiased 

by the term V0 = −V
t
M where M represents the average of 

Xi across all epochs i. The calculated projections may be 

considered as virtual channels that optimize group 

discrimination by minimizing the variance of the data along 

the projection while maximizing the difference between the 

projected group means. A form of Fisher Discriminant 

Analysis was applied to discriminate the projected samples 

in Y and predict group membership according to (4).  

 

bYZ t
====                    (4) 

 

The coefficients b (n-rows column vector) were calculated 

as in [13] since this approach appears to deal better with 

EEG data dynamics than regular Fisher’s approach. 

Discrimination quality was assessed through the mean 

prediction error rate calculated over 10 repetitions of a 10-

fold cross-validation scheme. The spatial filters were 

calculated for the training data (90%) of each session and 

their accuracy was tested on the validation data (10%) from 

the same session. 

III. RESULTS 

Table I presents the classification results of 100 

cross-validation folds for each subject. In each session, the 

minimum classification error was evaluated in two distinct 

periods: an early period from 50 ms to 250 ms after cue 

presentation; and a later period from 300 ms to 600 ms after 

cue presentation. The classification errors for the paradigm 

with balanced arrows (Experiment 1) were between 21% and 

32% in the early period and between 10% and 29% in the 

later period.  

 

 

 

 

 

 

The classification errors for the paradigm with unbalanced 

arrows (Experiment 2) were between 8% and 22% in the 

early period and between 6% and 28% in the later period. 

The classification errors were generally lower when 

unbalanced arrows were employed, especially for the earlier 

period. Exceptionally, the results for Subject C did not 

present any visible minimum for the early period in 

session 4. 

 

Fig. 3 illustrates the averaged classification results over 

time for subject E. The error minima for both periods can be 

observed in all sessions. The unbalanced arrows sessions 

(sessions 3 and 4) show lower mean classification errors for 

both the early and the later period, except for  the later 

period of session 3, when compared with the mean errors for 

the balanced arrows (sessions 1 and 2). 

 
Fig. 4 shows the topographical maps of two spatial filters 

calculated for sessions 1 (balanced arrows) and 3 

(unbalanced arrows) of subject A. Figure 4a refers to 

session 1 and shows increased filter weights for frontal and 

central electrodes. In contrast, Figure 4b shows highest 

weights on parietal and occipital electrodes for session 3. 

These results generalized well for other subjects. 

 

 

 

Table I. Minimal Classification error (%) results and respective latencies (ms)  evaluated in an early period (50-250 ms) and in a late period (300-

600 ms) for 5 subjects for all 4 sessions.  

 

Exp. 

(session) 

Subject A Subject B Subject C Subject D Subject E 
Early Late Early Late Early Late Early Late Early Late 

Err. 
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(%) 
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(ms) 

Err. 

(%) 

Lat. 

(ms) 

1 (1) 32 200 29 600 27 200 27 350 26 250 15 600 28 100 21 400 31 150 26 300 

1 (2) 27 200 27 350 21 50 22 400 22 250 10 550 22 250 15 600 28 50 25 550 

2 (3) 16 200 27 600 19 200 26 550 10 200 9 300 21 100 12 450 17 200 21 300 

2 (4) 8 200 28 350 16 200 24 400 - - 6 450 22 150 23 450 18 200 22 450 
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Fig. 3.  Average classification error rate for subject E for the balanced 

arrows paradigm (Experiment 1), sessions 1 and 2, and for the 

unbalanced arrows paradigm (Experiment 2), sessions 3 and 4. 
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IV. DISCUSSION AND CONCLUSIONS 

This work studied the effect of commonly used movement 

imagery cues (either balanced or unbalanced in subjects’ 

visual field) on the amplitude and latencies of cue-evoked 

responses. The observed classifications errors for left vs. 

right arrows suggest that the unbalanced cues are capable of 

eliciting enlarged lateralized responses as soon as 150-200 

ms after cue presentation. Additionally, for some subjects, an 

increase of the classification accuracy in a later period (300-

600 ms) was also observed. The spatial distribution of the 

filters calculated for sessions presenting unbalanced cues 

show predominant activation of vision-related brain regions, 

suggesting that the early error minima are due to VEPs that 

reflect visuospatial processing differences between left and 

right cues. In opposition, the spatial distribution of the filters 

for the balanced arrow cues suggests the activation of motor-

related brain regions. It is noted that the spatial distribution 

of the filters for the sessions employing balanced cues also 

shows slight activation of the occipital region despite the 

predominance of the central region. This fact points to 

remaining differences on the visuospatial processing 

required by left vs. right balanced cues. 

 

The presented results suggest that the display of 

unbalanced arrows is responsible for triggering enhanced 

visual evoked brain responses, as early as 150-200 ms. 

Previous studies have shown that non-centered cues tend to 

generate early visual ERPs with enlarged amplitudes as a 

result of attention allocation in visual space [7]. Similarly, 

the visuospatial attention mechanism may have enhanced the 

discrimination of left vs. right cues during the early time 

period. Therefore, arrows unbalanced in the subject’s field of 

view may be displayed in order to improve the detection of 

“idle” vs. “active” states of the subject thus validating later 

decisions based on movement imagery detection or other 

mental tasks. From our results, it remains unclear what is the 

correlation between the observed early (150-200 ms) error 

minima and the later (300-600 ms) error minima. Our future 

work will address this issue. Nevertheless, our findings 

suggest that such visual interfaces may be used as a gate 

mechanism in BCI systems for overall improvement of BCI 

performance. 
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Fig. 4. Topographical maps of two spatial filters calculated from 

scalp current densities of subject A. The electrode weights are 

presented for (a) session 1 (balanced arrows paradigm) and (b) 

session 3 (unbalanced arrows paradigm). 
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