
Flexible Architecture for

Microinstrumentation Systems in Silicon
E. Cretu, J.H. Correia, S.H. Kong, M. Bartek and R.F. Wol�enbuttel

Delft University of Technology, Dept. of Electrical Engineering,
Lab for Electronic Intrumentation/DIMES,
Mekelweg 4, 2628 CD Delft, the Netherlands

phone:+31-15-2781602, fax:+31-15-2785755
cretu@ei.et.tudelft.nl

Abstract|A
exible architecture for a microinstru-
mentation system in silicon was developped, and in-
tended for use in a wide range of applications. The
MCM device should be considered a genuine (mi-
cro)instrument, which supplies high- level data over
an external instrumentation bus. Internally, the
system should support all vital functions, such as
power management, self-calibration and in-system
data transfer over a
exible internal data bus. The
internal bus is the major subject of this paper.
Drivers are designed for a generic sensor module;
the application will decide the type of sensors to be
used.

Keywords|microsystems, internal bus interface

I. Introduction

The advances in silicon technology allow the intro-
duction of a new system concept, the microsystem,
as a merger between microelectronics and microme-
chanics. The concept of ASIC (Application Speci�c
Integrated Circuits) based on some standard blocks
proved to be a good compromise between a reduced
time to market and a high performance. It is already
widely used in microelectronics. A similar approach
could be introduced in the �eld of microengineering,
in particular for the development of microsystems en-
capsulated in a single package. ASIM (Application
Speci�c Integrated Microsystems) based on a com-
mon, standard system level architecture could deliver
in a standard way information toward a high-end pro-
cessor. The communication is based on a high level
protocol, independent of the type of the measured
quantities. Moreover, the microsystem behaves as an
autonomous unit, which manages and tunes internally
the functionality of the various sensors. However, new
problems appear, such as:

� which fabrication technology to choose for the in-
tegration in the same package of di�erent types
of sensors and di�erent electronical blocks

� assuming a centralized bus structure, what type
of protocol will allow
exible communication be-
tween the local master and di�erent types of sen-
sors

� how to increase the ratio between the com-
mon part, consisting of application-independent
blocks, and the part that depends on the speci�c
application

� the packaging could give rise to major technologi-
cal di�culties in case of di�erent types of sensors.

In order to obtain a good overall system performance,
one aims at a maximum decoupling between the fab-
rication of the standard unit and of the application
speci�c parts. The system structure will thus consist
of a common silicon substrate and surface-mounted
devices, e.g. the local microcontroller and the sensors
[1](Fig. 1). On the platform several active areas are
de�ned, for local bus drivers and a smart power unit
(the common infrastructural functions), together with
mounting sites for the application-dependent parts.

Fig. 1. Microinstrumentation platform

103

104 Proceedings of the ProRISC Workshop on Circuits, Systems and Signal Processing 1997

The system structure is based on a single master con-
troller, which communicates with the other devices
by sending and receiving messages on a unique, in-
ternal bus. The bus protocol must allow both analog
and digital signals to be sent/received, in order to in-
crease the range of usable sensors. The compromise

exibility/simplicity was settled by designing an Im-
proved Smart Sensor bus protocol, which adds a series
of facilities to the existing IS2 bus protocol [2].

The generality of the system architecture resulted
from the concept of generic sensor : a black-box de-
vice, for which only the interfacing properties are well
de�ned, and not its internal structure. The goal was
to allow a direct connection of di�erent types of sen-
sors to the internal bus, without any modi�cation of
the bus driver circuit. This is why the bus driver
is designed to support all the facilities provided by
the generic sensor block, which o�ers an extensive set
of working modes. Even if a speci�c sensor will use
only a subset, it can be directly connected to the bus,
without any modi�cation of the bus driver. ANY spe-
ci�c sensor will be easily integrated in the system if
it has at least one operating mode within the set for
which the driver was designed. This is in contrast
with generic or template objects. There any speci�c
object is guaranteed to have at least the interfacing
capabilities of its associated template.

II. The internal bus protocol

The general architecture of the microinstrumentation
system consists of a collection of sensor modules con-
nected on a unique bus, controlled by a master micro-
controller (Fig. 2).

The protocol used had to cope with the speci�city
of data acquisition tasks. The requirements imposed
were:

� simplicity, for a tight implementation in silicon (
for instance,to be a single master on the bus)

� to send/receive both analog and digital data
� on-line sensor calibration
� to allow both a polling mode, in which the mas-
ter asks a speci�ed device for data, and interrupt
mode, in which a device signalizes the availability
of data

� to let the master con�gure an addressed device.

The bus can be seen as consisting of four hierarchical
layers, at increasing levels of abstraction:

1. the mechanical and physical layer - the physical
structure (number of wires, maximum distance

Ext Bus Driver

Controller

Bus DriverBus Driver

Sensor 1 Sensor N

Bus Driver 1

Clk

Data

Data2 (Duplex)

V

V

SS

DD
Power
Supply

To external bus

Fig. 2. General Architecture of the microinstrumentation

system

between two consecutive units, etc.)
2. the electrical layer - focused on the electrical

characteristics of the modules (input and output
impedances, signal attributes, etc.)

3. the logical layer - deals with the mapping from
the electrical domain to the '0' and '1' logic levels

4. the protocol layer - associates a meaning with the
transmitted signals.

At the protocol level one distinguishes, with respect
to the semantic of the data, the following classes of
functions:

� sending/receiving data
� sending/receiving the state of the subsystem
� sending/receiving control signals.

The designed protocol was built up starting from the
basic features of the Integrated Smart Sensor (ISS)
bus protocol, previously developed in our laboratory.
A series of additions at the protocol layer resulted in
a new Improved ISS (IISS) bus protocol. This ful�lls
the imposed requirements and is suitable for a general
microinstrumentation architecture [3].The basic ideas
are:

� the use of a variable-length frame for sending each
message. At the beginning of the frame, the mas-
ter put a start bit, followed by a synchronously
transmitted �xed-length �eld. This has four bits
for address speci�cation and another four for the
command coding. After sending the 8 bit-wide
�eld, the master waits for the acknowledgment
symbol from the receiver. The remaining of the
frame is of variable length, until the master sends
an EOT (End of Transmission) symbol.

� use of the Manchester encoding scheme for the

Flexible Architecture for Microinstrumentation Systems in Silicon 105

transmission of synchronous data at the logical
level (inherited from the previous ISS protocol).
This allows a compact protocol. There are four
available symbols (Fig. 3), so two of them were
used for mapping of the logic symbols '0' and '1'
and the remaining two were used as metasymbols
('Free' and 'EOT') for separating the messages
and distinct �elds inside a message frame.

Clock

Data

"0" "1" "EOT" "Free" Bus Idle

Fig. 3. Manchester code

� at the electrical level, the use of the open-drain
technology for the connection on the bus allowed
a hardware arbitration and solving of the possible
bus con
icts.

The generic sensor interface for which the bus
driver was developped is presented in Fig. 4. A par-
ticular type of sensor could use all or only part of
the facilities o�ered by the interface. The state of a
sensor module was divided into two components: a
common part, embedded into the bus driver module,
independent of the sensor type, and a part supposed
to be inside the sensor module, of variable number of
bits. The common part at present consists of only two
bits, for enabling the Interrupt Request (IRq) and
Service Request (SRq) modes for the correspond-
ing device. We plan to add a general switch-o� bit, in
order to disconnect the supply voltage from the un-
used sensor modules. The IRq and SRq modes di�ers
from the normal polling mode in that the slave mod-
ule informs the master about the availability of data,
and does not wait to be asked. An interrupt request
has the meaning of an urgent message, so the sensor
may signalize even in the middle of another frame. A
service request has a lower priority; it may be sent
only when the bus is in idle state, that is, outside of
any message frame. The interrupt and service request
modes allows a
exible and low-power data handling
for rare or very important events [4].
In Fig. 5 there is an example of communication on
the bus, in which the local controller, after asking
the device a3 a2 a1 a0 to send data on its asynchronous
output, decides when to stop the data stream.
The functions presented in Table I are encoded in a
four bits wide command �eld Tx c2 c1 c0. On-line cal-

SCk

SetDefStatus

Status R/W En

Status R/W

StatusOut

StatusInSensor Module

SyncOut AsyncOut In

Request

RqReset

Fig. 4. Generic sensor interface

Async Data

E
O

T

Clock

Master

Sensor

S=
0

c2=
0

c1=
0

T
x=

0

c0=
0Data

Data

Fig. 5. A message protocol for getting asynchronous data

ibration procedure is included, by the addition of a
dedicated second data line. If this facility is not nec-
essary for a speci�c application, then only two commu-
nication wires (clock plus main data line) are needed.
The interrupt and service request signals were imple-
mented as short pulses put by the slave devices on the
clock line, thus bypassing the default polling mecha-
nism.

TABLE I

The mapping of the commands set

Tx c2 c1 c0 Command

0 0 0 0 get async. data
0 0 0 1 get sync. data
0 0 1 x get status
0 1 0 x unused
0 1 1 0 start async. duplex
0 1 1 1 start sync. duplex
1 IRqE SRqE 0 set IRqE,SRqE

and default con�g.
1 IRqE SRqE 1 set IRqE,SRqE

and a new con�g.

III. Hardware Realisation of the Bus Driver

The block diagram of IISS interface bus is shown in
Fig. 6. It was implemented in a 1.6�m CMOS process
[5].
The upper trace is the clock line, while the bottom
trace represents the data line voltage level. After
2 clock periods in which the data line remained in

106 Proceedings of the ProRISC Workshop on Circuits, Systems and Signal Processing 1997

Service and Interrupt
Request Control

Configuration register
Address reister

Address + Configuration
Control

Manchester
 Encoding

Sensor
or

Smart
Sensor

Bitstream, Analog, PWM, Frequency (Input)

Digital Input

Manchester
 Decoder

Data

Bus Interface Bus linesSensor

Interrupt Request

Service Request

line receiver

line driver

clock bufferProgrammable Integrator

Cal_line

Clk

Fig. 6. Block diagram of the bus interface

Fig. 7. Photograph of the bus driver chip

"Free" state, the master starts a new message frame.
Firstly, it puts a start bit ('0'), followed by the ad-
dress of the sensor ('0000'). In the present case a
simpli�ed variant of the bus driver was used, desig-
nated for those sensors which will only deliver data
toward the local microcontroller. Their activation is
implicitly done by addressing. In response to master's
request, the sensor '0000' con�rms by putting '1' on
the data bus. After that, it simply outputs a data bit
stream (in the image, a string of zeros). The trans-
mission is ended when the microcontroller forces an
'EOT' symbol on the data line. The hardware ar-
bitration resulted from the open-drain logic ensures
that the 'EOT' symbol is not overwritten by the sig-
nals sent by the sensor.

Fig. 8. Oscilloscope record of getting synchronous data

frame

IV. Applications

Presently the architecture is made suitable for appli-
cations where extended data processing from multi-
channel sensors is required. The focus is toward two
systems: a miniature spectrometer and a condition
monitoring system. The miniature spectrometer con-
sists of an array of tunable Fabry-Perot resonance
cavities for the spectral analysis of visible and near-
infrared radiation. The sensor similarities suggests
that most part of the software needed will be com-
mon for all the devices. For the condition monitoring
system a set of three accelerometers for measuring the
vibration spectrum in three direction is used. Based

Flexible Architecture for Microinstrumentation Systems in Silicon 107

on the comparison with pre-recorded pattern features,
an early prediction of upcoming failure can be antici-
pated.

V. Conclusions

The microinstrumentation system architecture pre-
sented here is aiming for an optimum compromise
between
exibility and simplicity. It can be used re-
gardless of the actual sensors needed for the applica-
tion. The resulting autonomous instrumentation sys-
tem exchanges externally only high level data with a
central processing unit. The internal communication
between the local microcontroller and sensors is done
in the Improved Integrated Smart Sensor bus proto-
col, suitable for a large range of sensors. The bus
drivers are standard modules, independent of the spe-
ci�c sensors. This approach enables the co-integration
of sensor and bus driver, but leaves also the option
for a two-die solution, with both sensor and driver
die bonded to platform. The practical realization in
CMOS technology proved that the present approach
o�ers an easily tunable metering system for various
applications. The low power consumption required for
the internal bus interface makes this solution very at-
tractive for integrated microinstrumentation systems.

VI. Acknowledgments

This work is supported by STW (project DEL
55.3733), TU Delft and JNICT-Portugal (PRAXIS
XXI-BD/5181/95).

References

[1] R.F. Wol�enbuttel, "Silicon sensors and circuits: on-chip
compatibility", Chapman-Hall, 1996

[2] J.H. Huijsing, F. Riedijk and G.vd. Horn, "Developments
in integrated smart sensors", in Proc. Transducers'93, pp.
320-326

[3] J.H. Correia, E. Cretu, M. Bartek and R.F. Wol�enbuttel, "
A microinstrumentation system for industrial applications",
in Proc. IEEE Int Symp. on Industrial Electronics (ISIE'97),
Guimar~aes, Portugal, July 7-11,1997

[4] A. Mason, N. Yazdi, K. Naja� and K.D. Wise, "A low-
power wireless microinstrumentation system for environ-
mental monitoring", in Proc. Transducers'95, pp.107-110

[5] J. H. Correia, E. Cretu, M. Bartek and R.F. Wol�enbuttel,
"A low-power low-voltage digital bus interface for MCM-
based microsystems", in Proc. 23rd European Solid-State
Circuits Conf. (ESSCIRC'97), Southampton, UK, Septem-
ber 16-18, pp. 116-119

108 Proceedings of the ProRISC Workshop on Circuits, Systems and Signal Processing 1997

