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Abstract. Thickness measurements of the cerebral cortex can aid di-
agnosis and provide valuable information about the temporal evolution
of several diseases such as Alzheimer’s, Huntington’s, Schizophrenia, as
well as normal ageing. The presence of deep sulci and ‘collapsed gyri’
(caused by the loss of tissue in patients with neurodegenerative diseases)
complicates the tissue segmentation due to partial volume (PV) effects
and limited resolution of MRI. We extend existing work to improve the
segmentation and thickness estimation in a single framework. We model
the PV effect using a maximum a posteriori approach with novel itera-
tive modification of the prior information to enhance deep sulci and gyri
delineation. We use a voxel based approach to estimate thickness using
the Laplace equation within a Lagrangian-Eulerian framework leading
to sub-voxel accuracy. Experiments performed on a new digital phantom
and on clinical Alzheimer’s disease MR images show improvements in
both accuracy and robustness of the thickness measurements, as well as
a reduction of errors in deep sulci and collapsed gyri.

1 Introduction

Automatic thickness measurements of the cerebral cortex from magnetic reso-
nance imaging (MRI) can aid diagnosis and provide valuable information about
the temporal evolution of several diseases. Several surface [1] and voxel-based
[2–4] approaches have been proposed. Although surface based approaches al-
low easier inter-subject thickness comparisons they are computationally very
demanding, often requiring laborious manual interaction at several stages. In
contrast, voxel based approaches are much more computationally efficient but
are also more prone to noise and partial volume (PV) effects. The presence of PV
effect in collapsed grey matter folds leads to the existence of PV-corrupted deep
sulci and collapsed gyri, the latter mainly caused by the loss of white matter in
patients with neurodegenerative diseases.

Several methods have been used to segment the brain into its different struc-
tures. Expectation-Maximisation (EM) based algorithms proposed by Wells et
al. [5], Van Leemput et al. [6] and Ashburner and Friston [7] are among the most
popular and accurate [8]. Prior information about the brain anatomy is gener-
ally used to initialise and locally constrain EM based segmentation algorithms,



Fig. 1. BrainWeb thickness measurements: Left) BrainWeb image (noise 3%, INU
20%); Centre) Proposed method; Right) MAP with MRF but without the proposed
improvements. The orange arrows point to areas of improved delineation with the pro-
posed method.

increasing the robustness to noise. However, in some cases, due to intensity non-
uniformity (INU), PV and noise, the local difference in intensity is insufficient
to provide a correct segmentation of fine structures. The use of priors may also
cause problems in areas that have some degree of natural variability, as the prior
information used is representative of a normal population and not of the partic-
ular subject under study. All these problems lead to an incorrect delineation of
collapsed grey matter folds, resulting in incorrect thickness estimates. Acosta et
al.[4], used information derived from an Euclidean distance tranform to modify
the cost function of a Markov Random Field (MRF) and added a post processing
step to solve this problem. However, the use of an ad-hoc mask produced by a
distance-ordered homotopic thinning (DOHT) algorithm that binarily unassigns
voxels from the thickness calculation may lead to an erratic solution. Hutton
et al.[2] used a mathematical morphology based layering method to detect deep
sulci, without taking the PV effect or the intensity of the voxels into account,
resulting in a loss of accuracy. Additionally, both approaches are only concerned
with improvements in the delineation of deep sulci. However, incorrect thickness
estimates can also result from loss of tissue in the gyri, which together with PV
effects and structural readjustments can lead to a collapsed gyri.

We propose a unified Maximum a Posteriori (MAP) based framework that
iteratively changes the priors, improving the PV classification and the delineation
of deep sulci and gyri (Fig.1). Both the solution of the EM algorithm and the
information derived from the Euclidean distance are used to locally modify the
priors and the weighting of the MRF, enabling the detection of small variations
in intensity while maintaining robustness of noise. Because of the MRF, the
thickness of the PV layer is reduced, making it more in line with the theoretical
anatomical limit. This obviates the need for an empirical threshold or distance
to stop the search for the correct border within the PV classified area. After the
convergence of the MAP algorithm, the cortical thickness is computed using an
Eulerian-Lagrangian approach, as in Acosta et al. [4].

2 Method

2.1 Intensity Model and MRF regularization

Starting from the image model developed by Van Leemput et al.[6], let y = {y1,
y2, ..., yn}, denote the intensities of an MR image of size n. Let z = {z1,z2,...zn}



denote the tissue type to which voxel i belongs. For K tissue types, let zi = ek
for some k, 1 ≤ k ≤ K where ek is a unit vector with the kth component equal
to one and all the other components equal to zero.

Additionally, consider that a bias field can be represented as a linear com-
bination

∑
j cjφj of J smoothly varying basis functions φj(x), with 1 ≤ j ≤ J

and x denotes the spatial position, and C = {c1,c2,...,cj} denote the bias field
parameters. Let Φy = {θ1,θ2,...,θK ,C} represent the overall model parameters.
Due to the multiplicative nature of the MR bias field, log-transformed intensi-
ties are used, making the bias field additive. Now suppose that the intensity of
the voxels that belong to class k are log-normal distributed with mean µk and
variance σ2

k grouped in θk = {µk, σ2
k}. The probability density that voxel i with

intensity yi belongs to class k is then

f(yi | zi = ek, Φy) = Gσk

(
yi − µk −

∑
j

cjφj(xi)
)

(1)

where Gσk
( ) denotes a zero-mean normal distribution with variance σ2

k.
By applying the EM algorithm, the Maximum Likelihood (ML) of the model

parameter Φy provides the following equations:
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where m denotes the number of iterations. The estimation of c(m+1)
j is provided

by Van Leemput et al. [6].
Instead of a ML type approach, we adapted the model to a MAP approach

by incorporating prior probability information derived from digital brain atlas.
These atlases are brought into correspondence using an affine registration [9] fol-
lowed by a free-form non-rigid registration algorithm [10]. The prior probability
is introduced as a weight πik =

{
πi1, πi2, πi3

}
, where πi1, πi2 and πi3 contain

the digital atlas prior probability of white matter (WM), grey matter (GM) and
cerebrospinal fluid (CSF) respectively and are integrated in equation 1 as

f(yi | zi = ek, Φy) = πik Gσk

(
yi − µk −

∑
j

cjφj(xi)
)

(5)

Equations 2, 3 and 4 remain valid and the initial values for p0
ik, µ0

k and σ0
k

are given by their equations with c
(0)
j = 0 and f(yi | zi = ek, Φ

0
y) = πik.

Unfortunately, the intensity model alone only works in relatively ideal condi-
tions because it only classifies the voxels of the image based on the intensity and
the initial prior information. Therefore, the model has to be made more robust
to noise by including spatial constraints derived from the anatomical properties



of the tissues. This is achieved by the use of an MRF that assumes the proba-
bility that voxel i belongs to tissue k depends on its neighbours. Using the same
approximation as described in [6], Equation 2 will now be

p
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Ni
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with,
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Ni

Φ(m)
z ) =

e
−βUmrf(zi|p(m)

Ni
,Φ(m)

z )∑K
j=1 e

−βUmrf(zi|p(m
Ni

),Φ
(m)
z )

(7)

where Umrf(zi | pNi
, Φz) is an energy function dependant on the parameters

Φz = {G,H}. G and H are K x K matrixes that control the energy of the
transition between classes, and pNi is the value of p in the 6 nearest neighbours
Ni = {in, is, ie, iw, it, ib}. At this stage β is constant and equal to 1. Please refer
to Van Leemput et al. [6] for the estimation of Umrf(zi | pNi

, Φz).

2.2 Prior Probability Relaxation

The EM algorithm is known to converge to a local optimum. In a MAP ap-
proach, the prior probability drives the EM algorithm to a sensible solution,
making it more robust to noise and INU. However, in areas with high anatomi-
cal variability, the MAP approach can lead to an erroneous solution because the
prior probability might be too low to allow the EM to converge to the expected
solution. It can also bias the segmentation towards the template, possibly over-
shadowing some anatomical differences. We propose a method where the prior
probability is changed iteratively at each convergence of the EM algorithm, in
an anatomically coherent way. As our model parameters become closer to the
true solution, we are able to locally relax our prior probability without loosing
robustness to noise, INU and PV.

Initially we model the problem with 3 classes, {WM, GM, CSF}. The prior
probability of WM, GM and CSF are derived from an anatomical brain atlas
and non-brain structures are removed. After the convergence of the EM algo-
rithm, the model parameters Φy are closer to the true solution, even though the
structures in areas with low prior probability might not converge to the correct
solution. Once the model parameters are closer to the true solution, the priors
are relaxed by letting neighbouring classes share prior probability. The updated
prior probability after the first convergence of the EM algorithm will be

πik =
{
pi1 + α pi2, pi2 + α (pi1 + pi3), pi3 + α pi2

}/
Πi (8)

where α is a pre-specified parameter that controls the percentage of prior
probability sharing (set to 0.2 here) and Πi is a normalisation constant ensuring∑K
k=1 πik = 1.
After the second convergence of the EM algorithm, we use the values of

pik, µk, σk to initialise a 5 class model, that considers 3 pure tissue classes
and 2 mixture classes {WM, GM, CSF ,WM/GM, GM/CSF}. All the classes



are modelled as Gaussian mixtures in the same framework as before. The prior
probability, average and variance for the 5 class model are denoted as π∗ik, µ∗k
and (σ2

k)∗, where the superscript * is used to indicate that they belong to the 5
class model. They are initialised as

π∗ik =
{
pi1, pi2, pi3,

√
p∗i1pi2,

√
p∗i2pi3

}/
Πi (9)
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where Πi is a normalisation constant over k and Γj/k is the average of the
fractional content (FC) between classes j and k, excluding values of FC outside
[0,1], where FC is defined as FC = (µj− ȳi)/(µj−µk) and ȳi = yi−

∑
j cjφj(xi)

is the INU corrected intensity. This new stage of the EM algorithm is initialised
with c∗j = cj and f(yi | zi = ek, Φy) = π∗ik.

2.3 Deep Sulci and Gyri Delineation

After the EM algorithm converges again, due to the presence of the MRF, fine
structures such as deep sulci and gyri might not be correctly segmented. In Van
Leemput et al.[6], the super- and sub-diagonal of the matrices G and H are
constrained to be equal to the diagonal itself, i.e., G(i,i) = G(i,i+1) = G(i,i−1)

and H(i,i) = H(i,i+1) = H(i,i−1). This type of constraint helps the detection
of fine structures, however it globally makes the segmentation less robust to
noise. To overcome this limitation, we propose a method to locally weight the
MRF algorithm and relax the prior probability. This way, the MRF can still be
robust to noise and simultaneously allow the segmentation and correct labelling
of fine structures. In a similar way to [4], we use the information derived from a
Euclidian distance transform to estimate the location of deep sulci and gyri and
change the priors and the weighting of the MRF only in those locations. The
functions ωgyri

i , ωsulci
i that are used to relax the priors are defined as follows:

ωgyri
i = log

(
p∗i GM0.5

(
1− ‖∇ECSF+

i ‖(1− p∗i CSF − p∗iGM/CSF)
)

+ 1
)/

Ωgyri (12)

ωsulci
i = log

(
p∗i GM0.5

(
1−‖∇EWM+

i ‖(1−p∗i WM−p∗i WM/GM)
)

+1
)/

Ωsulci (13)

where the Ω are normalisation factors, EWM+
i is the distance to the sum of

WM and WM/GM labelled areas thresholded at 0.5 (and similarly for ECSF+
i

with CSF and GM/CSF), and p∗GM0.5
is p∗GM also thresholded at 0.5. The weight-

ing of the MRF is incorporated in Equation 7 by replacing β with a spatially-
varying value

βi =
(
(1− ωsulci

i ) (1− ωgyri
i )

)/
Ω β (14)

The values of ωsulci and ωgyri vary between [0,1] and have a value of 1 near the
centre of the sulci and the centre of the gyri respectively. In a same way, the
value of βi is normalized by Ω β to lie between [0,1] and has a value of 0 near the



centre of the sulci and gyri. The functions ωsulci
i and ωgyri

i are going to be used
to iteratively relax πik to give more prior probability to the respective mixture
classes in areas where deep sulci and gyri should exist. πik is updated as

π∗ik =
{
pi1, pi2, pi3, pi4 + ωgyri

i pi2, pi5 + ωsulci
i pi2

}/
Πi (15)

This last EM stage is iterated several times and every time the EM converges,
ωsulci
i , ωgyri

i , βi and π∗ik are updated, and a new EM starts. The algorithm finishes
when the change in p∗ik at successive converged values of the EM algorithm is
less than a predefined ε.

2.4 Thickness Calculation

The cortical thickness is then computed using a hybrid Lagrangian-Eulerian
approach to solve the Laplace equation, as in [4]. This method takes into account
the PV effect and greatly improves the thickness results. The final values of
pik are used to create the labelled image, where each voxel is set to the most
probable tissue. The grey matter fractional content image, used in the thickness
calculation algorithm, is set to 1 for every voxel belonging to pure GM and set
to the correspondent FC for voxels belonging to mixture classes.

3 Experiments and Results

We created a very high resolution phantom containing finger and sheet like col-
lapsed sulci and gyri. The Euclidean thickness of the structure is constant and
equal to 8. This leads to an average Laplace equation based thickness of 8.13
and a standard deviation of 0.15 measured in the high resolution phantom. We
then use Fourier-resampling to reduce the resolution by a factor of 5, before
adding complex Gaussian noise (either low or high level) and taking the magni-
tude, resulting in two low resolution Rician noise corrupted phantoms. To obtain
artificial priors, the ground truth image was Gaussian filtered (σ = 4mm) to
simulate the anatomical variability.

The results are shown in Fig.2. The average (standard deviation) thickness
using the proposed method is 8.36 (0.44) and 8.76 (0.77) for the low and high

Fig. 2. Phantom segmentation for thickness: a) 3D model of the phantom, b) High
noise phantom, c) True labels and GM prior used, d) ML without MRF, e) ML with
MRF, f) Proposed method. The green arrows point to the presence of noise causing
wrong thickness measurements. The red arrows point to the detected deep gyri.
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Fig. 3. Box plot of the distribution for all AAL regions over all patients (blue/left) and
controls (red/right). The symbols *, ** and *** correspond to areas with a significance
level of p<0.01, 0.001 and 0.0001 respectively.

noise phantom respectively. These values are in line with the expected value
of 8.13(0.15). The MAP approach with the MRF but without the proposed
improvements yields an average of 12.87 (2.98) and 12.49 (2.82) for the low and
high noise phantom respectively, values of thickness much higher than expected
due to the mis-detection of the deep sulci and gyri. Finally, the approach without
either the MRF or the proposed improvements yielded an average of 12.11 (2.55)
and 9.35 (3.1) for the low and high noise phantom respectively. The average
thickness for the high noise phantom using this last technique is closer to the
true value of 8 than for the the low noise phantom, but this is due to the
noise introduced by the lack of MRF leading to a number of short paths to
mis-segmented voxels.

Secondly we tested our method on real data, comprising 28 Alzheimer’s dis-
ease (AD) patients and 17 age- and gender-matched controls. T1-weighted volu-
metric images were aquired on a 1.5 T Signa unit (GE Medical Systems, Milwau-
kee, WI) with 256x256 in-plane resolution, and 124 contiguous 1.5 mm coronal
slices were acquired using a spoiled fast GRASS sequence (TR = 15 ms; TE =
5.4 ms; flip angle = 15; TI = 650 ms).

Further details of the protocol and subject characteristics can be found in
[11]. The same transformation used to map the priors to the individual subjects
was used to propagate the AAL template [12], and average thickness values were
computed over 26 bilateral AAL regions. Fig.3 shows the distribution, at base-
line, of values over patients and controls, illustrating group separation in the
different brain regions. To statistically quantify the group-separation, we per-
formed two-tailed unequal-variance two-group t-tests over all the AAL regions;
significance is indicated in the legend of Fig.3. The best group separation was
acheived in two of the regions (cingulate and hippocampal formation) known to
be severely affected in AD.



4 Conclusions

We present an extension of previous work to improve the accuracy of cortical
thickness measurements by refining and enhancing the segmentation of the cor-
tex. The main contribution of this work lies in a method that iteratively relaxes
and modifies the prior information in an anatomically coherent way to ameliorate
the key problem of PV effect and reduce the bias towards the priors.

The method achieves better delineation of collapsed grey matter folds without
loosing robustness to noise and intensity inhomogeneity. All segmentation steps
(such as the transition from pure-tissue to PV model) are encompassed in a single
framework, without ad-hoc post-processing. Quantitative analysis of a phantom
using the proposed method demonstrated improvements in the accuracy and
robustness of the thickness calculation when compared to other methods. Results
on real data showed clinically-expected patterns of cortical thickness in AD, with
highly significant group differences in several areas.

In the future, we plan to expand and improve our technique to study the
temporal evolution of cortical thickness in neurodegenerative diseases.
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