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Multichannel electroencephalograms (EEG’s) are processed
using time-frequency (TF) analysis and synthesis technigues to
geometrically localize neuroelectric generators of specific activity
contained within the observed EEG. The TF domain technigues
are utilized to separate the signals of interest from the remainder
of the EEG, by allowing the definition of regions of interest which
contain the signals for which we desire to localize the underlying
neuronal generators. This approach essentially introduces a
[filtering technique which allows the distortionless separation
of the signals of interest from all other components recorded.
The source of the functional activity in the brain is estimated
and mapped numerically by a least-squares approach. We have
applied these technigues to identify the anatomical location of
the sleep spindle, a component of the EEG observed during
sleep, which is of importance in understanding the generation
of sleep and sleep patterns.

1. INTRODUCTION

A problem of major significance, in both basic and
clinical neuroscience, is the localization of functional areas
responsible for the generation of electrical activity in the
human brain. The solution of this problem will allow
important questions concerning areas of the brain in which
information is processed to be answered noninvasively,
and the identification of so-called “eloquent areas” of
the brain will allow these areas to be protected during
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surgery. In this paper, we first briefly provide a back-
ground in electrophysiology, including fundamental units
of the nervous system, their functions, their contributions

to the observed neuroelectric activity, and methods of

electroencephalogram (EEG) acquisition. Then, previous
signal processing methods applied to the EEG are reviewed,
with particular emphasis on time-frequency (TF) analysis.
We then review techniques for source localization based on
mathematical models of a volume conductor and a dipole
current source, formulated as the inverse problem of the
EEG. Next, we present our approach to the utilization of TF
analysis and synthesis techniques to process multichannel
EEG data. In this approach, we compute the TF distribution
series (TFDS) and assemble the results to form a weighted-
average. A region of interest (ROI) in the TF plane,
containing the identified signal of interest, is specified
with respect to this average, and the TF filtered signal is
iteratively reconstructed for each channel of the BEG using
a set of Gabor coefficients. Finally, experimental results
localizing the underlying generators for sleep spindles are
presented. These results demonstrate a significant improve-
ment on the source localization problem using TF technique
as compared to traditional methods.

II. BIOLOGICAL CONSIDERATIONS

It is well known that the variation of the surface potential
distribution on the scalp reflects functional activities emerg-
ing from the underlying brain [1]. This surface potential
variation can be measured by affixing an array of electrodes,
which are usually gold-plated, approximately 1 cm in
diameter, to the scalp, and measuring the voltages between
pairs of these electrodes, which are then filtered, amplified,
and recorded. The resulting data is called the EEG. Fig. 1
shows waveforms of a 8-s EEG segment containing five
recording channels, while the recording sites are illustrated
in Fig. 2.
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A segment of a multichannel EEG of an adult male subject during sleep: Only five channels

are shown out of a total of 64 channels recorded. This EEG segment belongs to stage two QS
demonstrating a sleep spindle between 4 and 7 s.

0z poz

02pod

pos

Fig. 2. Locations of electrodes: 64 recording electrodes utilized
in our experiments are shown with symbols commonly used in
neurophysiological studies. The viewpoint is directly above the
vertex of the head (Electrode Cz).

The brain is composed of neurons and supporting tissues
called glia [1]. Abstractly, a neuron is probably the most
diverse, in terms of form and size, of all cells in the
body; however, all neurons have in common the functional
properties of integration, conduction, and transmission of
nerve impulses. The neuron consists of three parts: 1)
a dendritic branching through which input information is
transferred to the cell, 2) a body (or soma) which serves
to integrate this information, and' 3) an axon, which is a
segment transferring information to other neurons. Each
neuron is in contact through its axon and dendrites with
other neurons, so that each neuron is an interconnecting
segment in the network of the nervous system.

SUN et al.: LOCALIZING FUNCTIONAL ACTIVITY IN THE BRAIN THROUGH TIME-FREQUENCY ANALYSIS

The synapse, a specialized site of contact between neu-
rons, is of prime significance in the integrative activities of
the nervous system. Electric potentials are produced at the
synaptic junctions which reflect communication between
neurons, and unidirectional conduction is determined at
these sites, resulting in functional polarity for sequences
of neurons such that excitation can only be transmitted
from the axon of one neuron to the dendrites or soma of
the next. Stimulation of the synaptic input sites on the
soma and dendrites generally evokes a graded potential
which spreads decrementally to reach the initial segment of
the axon where an action potential may be produced. The
dendrites and the soma are not adapted for long-distance
transmission, as is the axon, but rather for integrating
synaptic activity. In addition to the fast action potentials
observable from single neurons in any domain of cortical or
subcortical tissue, slower wave processes may also be seen.
The EEG is thought to be the synchronized subthreshold
dendritic potentials produced by the synaptic activity of
many neurons summed [2].

Compact groups of neurons, called nuclei, are anatomi-
cally identifiable within the central nervous system. Tracts
of axons connecting these nuclei can be traced from region
to region and it is to such relatively complex nuclear regions
that the various functions of the nervous system are related,
and which are the putative sites of generators for the EEG
observed on the scalp.

The EEG recorded from the scalp in man typically has
amplitudes from 10 to 100 ¢V and a frequency content
from 0.5 to 40 Hz. Signals of 10-30 1V are considered low
amplitude and potentials of 80—-100 .V are considered high
amplitude. The spectrum of the EEG is traditionally divided
into four dominant frequency bands: §-band (0—4 Hz), 0-
band (4-8 Hz), a-band (8-13 Hz), and 3-band (13-30 Hz).
An alert person displays a low amplitude EEG of mixed
frequencies, while a relaxed person produces large amounts
of sinusoidal waves, in the 8—13 Hz frequency range, which
are particularly prominent at the back of the head.
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The EEG has been a primary tool in the study of
sleep which is important in both basic neuroscientific

research and the clinical diagnosis of many neurological

disorders. In the adult human, sleep is classified into several
stages on the basis of brain, muscle, and eye activity,
although the boundary between stages cannot be clearly
defined. Quite sleep (QS), rapid eye movements (REM),
and occasional momentary wakings occur in a periodic
sequence throughout the night, taking approximately 90
min in the adult human [3].

QS stage may be further differentiated into four sub-
stages. As an individual goes to sleep, a-activity is replaced
by a lower amplitude, mixed frequency voltage (stage one
QS), which within minutes has superimposed 1-2-s bursts
of 12-14 Hz activity called sleep spindles (stage two QS),
the activity investigated in this research. Several minutes
later high-amplitude slow waves (0.5-3 Hz) appear and
mark the onset of stage three QS. After about 10 min these
slow waves dominate the EEG and the deepest stage of
sleep, stage four is reached. After a return through these
stages, REM sleep occurs, approximately 90 min after sleep
onset [3].

The notion of sleep stages in terms of frequency features
described above has been accepted as a general rule in
the EEG community in the study of sleep. However, in
many individuals, the EEG does not follow this rule closely.
Significant fluctuations can occur over a short period of time
due to rapid changes in the underlying neuroelectric activity
in the brain (see Fig. 1). For a signal with rapidly varying
spectral attributes which cannot be modeled adequately by
traditional means, difficulty often arises in understanding
the signal since it cannot be well separated from the
background EEG. In Sections V and VI we will investigate
this problem using TF techniques.

III. EEG SIGNAL PROCESSING

Signal processing techniques have also been extensively
applied to the EEG. Early studies using computational
methods to analyze sleep signals were reported by Sclabassi
et al. [4], [5] whose methods were primarily dependent on
the Fourier transform to estimate the spectra of the EEG,
assuming that the observed data was stationary over short
periods of time (on the order of 2-4 s). Techniques based
on spectral analysis of the EEG were discussed in detail by
Jervis et al. [6], where important aspects of designing slid-
ing windows and computing predictive statistical measures
were presented. Although Fourier transform based methods
have been improved considerably over years of research,
and the frequency band classification referenced above,
which summarizes the spectral content of the EEG, provides
a convenient basis for EEG analysis and comparison, these
methods are not effectivé when the EEG exhibits significant
ponstationarities. This drawback has been addressed by
many investigators [7], [8].

Recently, advanced signal processing methods, such as

wavelet transforms [9], [10] and TF ‘analysis. [11]-[13],"
have been applied to the EEG and other physiological -
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signals. A comprehensive survey of this development has
been provided by Lin and Chen [8] where the fundamental
background of TF techniques and their applications to the
EEG and evoked potentials, as well as other biological
signals, are extensively reviewed. Aiming to characterizing
the evolution of time-varying spectrum of the EEG, Blanco
et al. [14] reviewed TF distributions based on the Gabor
transforms. Features of the signals are extracted from the
TF distributions and then used in a pattern classification
process. This technique produced encouraging results in
the study of spectral variation in epileptic seizures. Other
interesting applications of TF techniques to the EEG was
reported by Nayak et al. [15] in the detection of depth
of anesthesia during surgery. They showed that the depth
was characterized by TF features which, under certain
anesthetic conditions, are superior to those derived from
the traditional Fourier analysis. Alternative types of TF
distributions, such as the pseudo Wigner distribution, have
been found effective in providing high-resolution details of
event-related potentials (ERP’s) which are observed from
averaged EEG trails [16], [17].: The Page and Rihazcek
distributions have also been applied to the EEG and ERP’s
[18], [19], as has the Choi—Williams distribution [20],
which provides a higher resolution than the spectrogram -
and fewer interfering cross-terms than the pseudo-Wigner
distribution. The Choi—William distribution has also been
used to analyze the electrocorticogram (ECoG) which is
recorded from the surface of the cortex, rather than the
scalp [20]. The cross TF distributions which measure the TF
coherence of a pair of signals have been used for analyzing
multichannel EEG [16], [17] and for identifying epileptic
seizures [20]. )

IV. EEG-BASED SOURCE LOCALIZATION

Most previous applications of signal processing to the
EEG have focused on finding temporal and spectral proper-
ties of the signal to permit testing of hypotheses relating to
changes in these measures with respect to different groups
or experimental conditions. In an alternative problem, how-
ever, one is focused on localizing the particular neuronal
structure responsible for the generation of particular ob-
served activity [21]-[26]. In this approach, the geometric
space of the head is the domain of interest for 1oca1izing a
source of functional activity; i.e., a set of densely packed,
activated neurons, based on the observed signals from the:
scalp. This problem has been formulated as the inverse
problem [22]. Theoretically, a system has an inverse if,
and only if its input/output relationship is unique; however,
this is not the case in this problem since different sources
may produce identical waveforms at any recording site.
Therefore, the inverse problem is generally ill-posed and
the solutions are not unique.

Models of the head, including its geometry and con-
ductivity, are required to solve the inverse problem. The
simplest model [27] includes a dipolar current source
in a spherical volume conductor with shells of isotropic
conductance. More complex models employ more than one
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dipole, more realistic head shapes, and nonhomogeneous
conductivity values [28], [29]. A forward solution for any
given model can be obtained using the following differential
equation [30]

div(o(r)grady(r)) = s(r),

where “div” and “grad” denote, respectively, the operators
of divergence and gradient, {2 represents the space of the
head, ¢(r) is the potential function of location r, o(r) is
the conductivity tensor (generally anisotropic), and s(r)
is the current source density function. When ¢ and s
are known and certain boundary conditions are imposed,
1 may be solved analytically for a layered spherelike
volume conductor excited by a dipolar current source
[30]. In more realistic models, an analytic solution does
not exist and the problem must be solved by using the
finite boundary or finite element method which requires
considerable computation.

In the next step a numerical optimization is utilized to
compare the computed scalp voltages obtained from the
forward solution against the measured EEG. Assuming the
dipole is unconstrained, i.e., free in translation and rotation
inside the head, this optimization minimizes the following
residual variance

forreQ )

_ V(e - v
oy v(c)?

where V(c) and v(c) are, respectively, the theoretical and
actually measured scalp voltages for channel ¢, and N,
is the number of channels. Traditional optimization algo-
rithms, such as the simplex algorithm and steepest descent,
are often employed to determine a total of six parameters
for the optimal source dipole, three for the location vector,
and three for the directional current components [22].

)]

V. TIME-FREQUENCY METHODS

Most source analyses for the EEG are performed in the
time and spatial domains where the measured potential
values are used to find the equivalent dipoles [21]-[24].
There also exist techniques based on the frequency domain
features of the EEG, where the discrete Fourier transform
is applied to the EEG traces before applying the source
localization algorithms on the calculated potential maps
[31], [32]. In the case where only a subset of the Fourier
coefficients is used in this procedure, an effect of bandpass
filtering . results. Obviously, this method is not suitable
for the case of nonstationary EEG, where the patterns of
interest cannot be represented by a bandpassed signal.

Another problem is present in source localization
schemes related to noise contamination in the nonstationary
EEG. As discussed above, the EEG is a complex signal
reflecting integrated neuroelectric activity. Some of this
activity is related to the event of interest, while some may
be considered to be noise interference. The EEG is often
contaminated by other biological and environmental noise
as well, such as muscle activity, the electrocardiogram, 60
Hz components from the power line, variation in electrode

contact impedance, and electromagnetic emissions. The
solutions obtained to the inverse problem, without filtering
the EEG, could be at best, highly variable, and at worst,
meaningless. Traditional bandpass filtering may be applied
when the signal and noise do not share the same frequency
bands; however, this is seldom the situation.

TF analysis provide us with a powerful alternative for
isolating signal components of interest from contaminating
noise components. Noise can be identified much more
easily in the joint TF domain than in either the time or
frequency domain alone. While noise tends to spread widely
in the TF plane, the signal is often concentrated, though its
TF profile may be complex in shape. This suggests that
a solution to the problem of separating signal components
of interest from the contaminated EEG is to transform the
EEG into the TF domain, isolate the patterns that reflect the
event of interest, and then reconstruct the signal using these
patterns by TF synthesis. This approach has been adopted in
our study on contaminated, nonstationary EEG recordings.

A. Time-Frequency Analysis

Multiple channels of the EEG (64 in our case) must be
acquired to obtain a sufficient sampling of the potentials
distributed on the scalp in order to solve the source localiza-
tion problem. If we calculate and store the TF distribution
for each channel of the EEG for consequent analyses, the
size of the intermediate data would be overwhelming. This
problem is approached by obtaining the weighted average
over a TF distribution for each channel to produce a
single distribution. Such an approach not only reduces the
data size, but also suppresses noise present in individual
channels because the noise is often less correlated among
channels than the signal. The TF components of the noise
have both polarities, which tend to cancel each other during
averaging.

An important concern, however, must be addressed to
warrant the use of averaging. In the case where the signal
components in different channels of the EEG did not
exhibit similar TF characteristics, a smearing of the useful
components would occur. We investigated this problem by
considering the propagation of the EEG in relationship to
the dielectric properties of the head volume conductor. In
most cases, the spectral energy of the EEG above 30 Hz
is insignificant [1]. Below this frequency, the dielectric
properties of the volume conductor are negligible [21].
Therefore, the signal observed in any channel of the EEG
corresponding to a compact, stable source must have a
similar waveform and arrival time at all recording sites on
the scalp, despite the difference in amplitude due to the dis-
tance between the source and electrode. Consequently, the
signal’s TF characteristics must be similar in all channels.

We thus compute the TF distribution for each channel

and average the results across the channels by

N. A
P(thzg— P.(t,w) 3)
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where P, (t,w) and P(t,w) are, respectively, the TF distri-
butions for the cth channel and their weighed average, and
S. and S, are, respectively, the energy within the frequency
band of interest and the total energy for the signal in channel
c. The inclusion of weights in (3) allows a prediscrimination
of the noise by emphasizing the channels where the signal is
strong. In order to estimate the energy ratio %, we applied a
bandpass filter to all channels of the EEG with fixed cutoffs
which were deemed to be sufficiently wide to cover all
possible frequencies of the signal (to be discussed further
in Section VI).

Many types of TF distributions can be employed as
P.(t,w) in (3). The Wigner—Ville distribution (WVD) pos-
sesses many useful properties and has excellent joint TF
resolution; however, it suffers from cross-terms which
appear as highly oscillatory artifacts in the TF plane [33].
The oscillation of these cross-terms suggested to us to
decompose the- WVD, utilizing the Gabor transform [14],
[34], into a set of two-dimensional (2-D) localized, harmon-
ically related coefficients, and then remove the high-order
harmonics which mainly contribute to cross-terms in the
WVD. Although this approach seems to be applicable, the
Gabor coefficients are inner products of the WVD and 2-
D dual functions, which are expensive to compute. An
alternative approach is to utilize one-dimensional (1-D)
Gabor expansion with respect to the input signal, and then
construct a 2-D expansion of the WVD using the resulting
coefficients. Let s(¢) be the input signal. We have

s(t) =Y Connhmn(t) ‘ 4)

where Cpon = [7 s(t)gs, o(t)dt is the set of Gabor
coefficients, and “*” denotes the complex conjugate. This
expansion is valid only when A, »(t) and g, ,({) are
provided by a pair of windows which serve as dual basis
functions [34], [35].

Using (4), the WVD of s(¢), W(¢,w), is given by

Walt,w)= >

m,m’ ,n,mn’

Cm,nc:n',n' W}hhr(t, w). &)

When Ay, (t) is particularly chosen as a modulated and
time-shifted Gaussian, the cross-WVD, Wh,h,(t,w), is a
2-D Gaussian in the TF plane [36] having the following
explicit form

Whn(t,w) =2 z _exp[jpwoT]

e
X exp[—(t;%)2 — 0% (w —wo)?
x exp[—j(pTw — ¢2t)] (6)
where
by = m—;m’T, wo = n-}-n’Q’
p=m-m/, g=n-—n

1306

and T and (2 are, respectively, the time and. frequency
sampling steps [36]. The TFDS, a cross-term reduced
WVD, is defined as a partial sum of (5), i.e.,

D

TFDSp(t,w) =Y | . CronCi Wi (t,w)
d=0 | |p|+lq|<d

)

with D being defined as the order of the TFDS. For
D = 0, the TFDS is a nonnegative distribution similar
to the spectrogram which has low TF resolution but weak
cross-terms. As D goes to infinity, the TFDS converges to
the WVD which has a high TF resolution but strong cross-
terms. In the case of the EEG, the choice of D equal to
three or four provides a good compromise.

The computation of TFDS is extremely efficient since
Crn,n is no more than a sampled short-time Fourier trans-
form and the Gaussian Wy, (¢,w) is known in advance
[34].

B. Time-Frequency Synthesis

In order to incorporate a prior knowledge about the TF
features of the signal, the average TF distribution, P({,w)
in (3), is rendered as an image which is then utilized to
identify the boundary of the TF component (a ROI) of
the signal for which we are interested in identifying the
generator. The coordinates of the boundary are converted
into a binary mask. This mask is used for selecting the ROI
in each channel of the TF distribution which is then utilized
to reconstruct the noise-free signal.

A problem arises in this reconstruction. It has been
shown that, after modifying the values of an arbitrary
TF distribution of a signal, the result is, in general, not
representable [12], i.e., there may not exist any signal
that would produce the masked TF distribution given by
the ROI. However, it is possible to construct a signal
whose TF distribution is, in the least-square error (LSE)
sense, closest to the desired ome [11], [12], [37]. LSE-
based TF synthesis has been extensively studied. Theories
and algorithms based on the WVD [37], spectrogram [38],
[39], and the more general forms [11]-[13], [40] have
been developed. Although these techniques are applicable
to the EEG case, they are based on the entire values
of the underlying TF distribution (represented as a large
matrix) which are considerably redundant in terms of signal
representation. As a result, the computational load is heavy
for the EEG having a large number of channels.

In the TEDS case the computation becomes less cum-
bersome. We take the advantage of the linear form of
(4) and work on the Gabor coefficients instead of the TF
distribution. First, the noisy signal s¢ is mapped to the joint
TF domain via the Gabor transformation G to obtain the
Gabor coefficients ¢y = G'sy. If we do not alter the Gabor
coefficients, the original signal so can be recovered by the
Gabor expansion FE, that is, s = EGsg, because BG =T
resulting from the biorthogonality of the Gabor transform,
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Fig. 3. (a) The weighted average of 64 TFDS’s for the EEG shown in Fig. 1. The sleep spindle

signal can be observed. (b) The ROI containing the sleep spindle signal in (a).

where [ is the identity matrix. When the modification mask
is applied, the modified Gabor coefficients may no longer
correspond to a valid signal, i.e., Gs; # MGsq, where M
denotes the mask matrix and s; = EM Gsq. However, if we
apply the same mask matrix to G's; and compute the next
waveform s,, and continue this process i times, we obtain
(EMQ@)'sy = s;. In this integrative projection process,
s; is convergent as long as matrix EMG satisfies the
conventional convergence conditions for its power matrices
[41]. The relationship between the eigenstructures of EM G
and the mask matrix M is rather complicated; however, for
various binary M tested by us, the numerical results have
always been convergent.

VI. LOCALIZATION OF SPINDLE SIGNALS IN SLEEP

As an example we present a study based on sleep spindles
recorded from three healthy adult subjects. As previously
described, sleep consists of states for which the brain waves
are quite different. Spindles occur during stage two sleep,
which occupies more than 50% of the total sleep time in
a typical adult. Computer detection of sleep spindles using
TF techniques has been reported by Durka and Blinowska
[42], where the wavelet transform based matching pursuit
algorithm was applied. They showed that the spindles were
separable from other components in the EEG in the TF
plane; however, due to the limitation of the number of
entries in the dictionary of the TF atoms, it is apparent
that the fine details of sleep spindles were not extracted as
well using the Gabor transform approach [Fig. 3(a)].

It has been hypothesized [43] that the spindle activity
is related to the thalamus (a relay nucleus located near
the center of the head) with propagation to the cortex via
thalamocortical projections. Animal studies [44] have been
performed which suggest that sleep spindles are generated
in the thalamus. However, the invasive procedures utilized
in these studies cannot be applied to human subjects. In
our approach we use TF techniques to test the hypothesis
that the thalamus is indeed the site of the spindle generator
in the human. _

We recorded spontaneous EEG (sampled at 256 Hz) from
three sleep-deprived male subjects aged 26, 28, and 39

Time-Frequency Distribution Series

Frequency

Gabor Sampling Lattice

Fig. 4. The ROI specified in the TF plane is projected to the grid
of the Gabor coefficients. This projection matches the locations of
the corresponding TF elements such that the Gabor coefficients can
be modified to reconstruct the signal.

using a 64-channel amplification and acquisition system.
To avoid aliasing, an analog bandpass filter with cutoff
frequencies of 0.1 Hz and 70 Hz were utilized before
digitization. Electrodes were placed at the sites defined in
the International 10-20 System [2] and at the midpoints
between these standard electrode sites (Fig. 2). Sleep spin-
dles were identified and notated by a trained sleep scorer.
A total of 38 segments of EEG containing sleep spindles

‘were identified and selected for this study. Each segment

contained 64 channels of data with 2048 samples per
channel. In order to reduce the border effect in the process
of computing TF distributions, we positioned the spindle
signal near the center of each segment. The segmented data
were then downsampled by a factor of four after digital
low-pass filtering (cutoff frequency 25.6 Hz, well above the
maximum sleep spindle frequency). A set of typical traces
of the EEG (recorded from five of the electrode sites) is
shown in Fig. 1.

The TEDS for D = 3 was computed for each trace
and averaged over all 64 channels using (3). This value
was determined empirically by repeated calculations of
test spindle segments. The weights for this average were
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Fig. 5. Results of five channels of the reconstructed sleep spindle using TF analysis and svnthesis of
the raw EEG shown in Fig. 1. A comparison between these two figures indicates that the background

noise is effectively removed by the TF technique.

Current Strength

X-axis

Y-axis

Z-axis

Fig. 6. Histogram of the strength of the dipole current in each of the z, y, and z coordinates. A
more spread distribution of the current moment can be observed in the z-axis than in the z- and
y-axis. This indicates that the source current of sleep spindles tends to be stronger in parallel to

the direction of the vertex of the head.

determined by a bandpass filtering with cutoffs of 10 and 16
Hz, which were the extreme frequencies of sleep spindles
within our test data, estimated by visually examining the
TFDS of all 38 spindle segments. The Gaussian synthesis
window (length 256) was used in the computation of the
Gabor coefficients. This window and its dual window with
T = 8 and 2 = 4 were almost identical [34], [35].
The average TFDS produced for each spindle segment
was again examined and the ROI in the TF plane was
specified interactively. The averaged TFDS and the ROI
corresponding to the signal in Fig. 1 is shown in Fig. 3.
The ROI was then proportionally projected to the Gabor
sampling lattice as shown in Fig. 4 to produce a binary
matrix M which is used in the synthesis process. The
synthesized signal computed from Fig. 1 is shown in Fig. 5
where it can be seen that the background EEG activities
have been essentially eliminated. We applied the single-
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dipole source localization algorithm to a total of 2559 time
slices from all 38 spindle segments using the homogeneous
spherical head model [o(r) = 0.0033 for all r in (1)].
The source localization results are exemplified in Fig. 7
which corresponds to the single spindle segment shown in
Fig. 1. The dipoles localized are overlaid on the subject’s
MRI sectional image shown in Fig. 7(a). Similar results
were obtained from other spindle segménts which are
summarized in Table 1, where the average source location
(column two), standard deviation (column three), and the
average residual variance (column four) of the sources for
each of the three subjects are shown. Fig. 6 shows the
histogram of the calculated strength of the dipole current in
each of the three coordinates. It can be observed that, since
the energy of the dipole moment for the z-axis (through
the vertex of the head) is much larger than other axes,
the current of the spindle source tends to flow in the up

PROCEEDINGS OF THE IEEE, VOL. 84, NO: 9, SEPTEMBER 1996



Fig. 7. (a) Localized dipoles (with TF processing) are superimposed with the MRI sectional image
of the subject. The dipoles (cross patterns) are concentrated in the neighborhood of thalamus as
suggested by the previous animal experiments. The average residual variance for the dipoles in
this particular data segment is 3.23%. (b) The same result without TF processing, but with the
traditional bandpass filtering (Order-8 Butterworth) between 10 Hz and 16 Hz. It can be observed
that the dipole locations are scattered due to the influence of the remaining noise. The average
residual variance in this case is 8.52%, 2.6 times larger than the case of using TF processing,

indicating a less confident result.

Table 1 Statistics of Sleep Spindle Source Locations for Three Subjects

Subject Location Standard Deviation Residual Variance Number of Dipoles
i (0.1007, —0.0064, 0.1961) (0.1937, 0.1129, 0.1349 6.09% 1042
2 (—0.0303, —0.0055, 0.0948) (0.1141, 0.0739, 0.1237) 3.35% 444
3 (0.0649, 0.0316, 0.1999) (0.1533, 0.1064, 0.1265) 5.43% 1073

and down directions. In addition, the grand averages for
the three subjects with respect to the dipole locations and
their standard deviations are (0.0451, 0.0066, 0.1636) and
(0.1537, 0.0977, 0.1284), respectively, which suggest that
the source of the sleep spindles is located in the region
of thalamus. This result is in a good agreement with the
previously reported experimental data and hypothesis [43],
[44].

Finally, to compare the TF and the traditional band-
pass filtering methods, we localized dipoles for the same
spindle segment (shown in Fig. 1). We applied an order-4
Butterworth filter with cutoffs 10 and 16 Hz (determined
as described previously) twice to each channel of data in
the increasing and decreasing directions in time to cancel
the nonlinear phase distortions. The results are plotted
in Fig. 7(b) where the patterns are scattered due to the
influence of noise which is left in the signal. The average
residual variance is 8.52%, 2.6 times larger than that
obtained by the TF method (3.23%), indicating a much
poorer result.

VII. DISCUSSION

We have reviewed the applications of TF techniques to
the study of the EEG and, in particular, to the processing
and localization of sleep spindle patterns in the brain. It
has been shown that, using the TF filtered scalp potentials,

a good fit of the sleep spindle signal to a dipolar source
located near the center of the head can be obtained. Our
results agree with that obtained from previous animal
experiments. We have also found that nonstationary EEG
signals, such as sleep spindles, can be effectively filtered
and reconstructed in the TF domain as long as they maintain
oscillatory profiles with reasonable many of cycles. The
synthesized noise-free signal provides a reliable input to
source localization or pattern classification algorithms.
Although useful in many cases of EEG analysis, TF
techniques cannot be considered as a versatile tool to
solve EEG problems. In cases where the signal is rel-
atively stationary, such as in some QS stages without
spindles, muscle artifacts, and K-complex patterns [2],
traditional methods based on the Fourier transform and
parametric approaches, such as autoregressive and moving
average modeling, may perform extremely well. In these
cases, use of TF techniques, which generally require more
computation and storage, may only result in a waste of
efforts and computational resource. In other cases where
the brain waves exhibit isolated triangular or sharp waves,
such as the K-complex and certain epileptic patterns, TF
distributions may have difficulty in identifying signal and
noise components. In these cases the time-varying spectra
of these signals may be either widely spread in the TF plane
overlapped with the noise components, or severely packed
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in the low frequency region without showing identifiable
patterns. In this case, high-resolution time-scale analysis
and synthesis approaches, such as wavelet decomposition
with a signal-matched functional basis [9], [10] and non-
linear wavelet denoising [45] with a variable soft threshold
are highly recommended.
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