Elementos de Controlo Automático

5 – Estabilidade de Sistemas Realimentados Lineares

PAULO GARRIDO

Escola de Engenharia da Universidade do Minho

Elementos de Controlo Automático / 5 Estabilidade de Sistemas Realimentados Lineares © 2005 Paulo Garrido – Universidade do Minho

Informação de direitos de autor.

Esta publicação, incluindo a faculdade de impressão, destina-se aos alunos dos cursos de engenharia da Universidade do Minho.

Pode ser utilizada por outras pessoas para fins exclusivos de aprendizagem, desde que o documento seja integralmente mantido. Qualquer outra utilização sem autorização do autor é ilícita. Este pode ser consultado em pgarrido@dei.uminho.pt

Índice

5.1 Resposta em frequência de modelos lineares	3
Transformada de Fourier	4
Representação gráfica de funções de transferência em j ω	7
Diagramas de Bode	8
5.2 Critério de estabilidade de Nyquist	14
Margens de ganho e de fase	
Estabilidade pelos diagramas de Bode	19
5.3 Exercícios	22

5

ESTABILIDADE DE SISTEMAS REALIMENTADOS LINEARES

Objectivos Métodos clássicos de estudo da estabilidade de sistemas realimentados lineares: resposta em frequência e lugar de raízes. Resposta em frequência de modelos lineares: função de transferência em jω, transformada de Fourier, espectros de um sinal e função de transferência em frequência; formas de representação gráfica, diagramas polares e de Bode. Critério de estabilidade de Nyquist. Margens de ganho e de fase. Outras respostas em frequências presentes no anel. Análise usando diagramas de Bode. Exemplos, incluindo atraso puro.

A determinação da estabilidade de um sistema realimentado tem um papel absolutamente necessário no seu projecto. No capítulo anterior, o leitor ou a leitora foi convidado a observar que a estabilidade do sistema realimentado dinâmico descrito por

$$Y(s) = \frac{C(s)H(s)}{1 + C(s)H(s)}Y_r(s) + \frac{1}{1 + C(s)H(s)}P(s).$$
(5.1)

depende da posição dos pólos das funções de transferência na expressão, ou da posição das soluções da *equação característica do anel*

$$1 + C(s)H(s) = 0, (5.2)$$

no plano s.

Um algoritmo de cálculo das soluções de 1+C(s)H(s)=0 ou dos zeros da função A(s)=1+C(s)H(s) permitirá determinar a estabilidade do anel. Mas mais do que saber se o modelo é instável ou não, importa relacionar a variação da estabilidade com a variação dos parâmetros de C(s) e com a variação dos parâmetros de H(s). Desta forma, podem indicar-se valores de parâmetros de C(s) que darão *margens de estabilidade m_e* do anel realimentado, face a variações de parâmetros no mesmo.

Dois métodos gráficos são clássicos para tornar clara esta relação. O *critério de Nyquist* na forma de diagramas de Bode e o *lugar de raízes* de Evans. O primeiro usa a visualização da função:

$$C(s)H(s)|_{s=i\omega} = CH(s)|_{s=i\omega} = CH(j\omega).$$
(5.3)

Esta função é chamada a *função de transferência em* j ω do anel em aberto.

O segundo permite visualizar o lugar geométrico descrito pela posição dos zeros de 1+C(s)H(s) com a variação de um parâmetro de C(s)H(s). Usualmente esse parâmetro é tomado como sendo o ganho *K*, tal que:

$$C(s)H(s) = CH(s) = K \cdot CH'(s) = K \frac{(s-z_1)\cdots(s-z_m)}{(s-p_1)\cdots(s-p_n)}.$$
(5.4)

Em (5.4) os $z_1,...,z_m$ são os zeros e $p_1,...,p_m$ os pólos de CH(s). Note-se que CH'(s) é uma função racional mónica ou fracção de polinómios mónicos¹ de s.

Exemplo 5-1: lugar de raízes de um integrador realimentado com controlo PI.

Suponhamos que estamos a controlar um integrador realimentado com H(s) = 1/(s+1), usando controlo proporcional-integral no erro: $C(s) = K_p(s+2)/s$. Os pólos de CH(s) estão em -1 e 0. O único zero situa-se em -2. Neste caso, $K = K_p$. A Figura 5-1 mostra o lugar de raízes do anel de realimentação resultante, confinado ao rectângulo de dimensões indicadas.

Cada um dos métodos tem as suas vantagens e é útil conhecer os dois. Neste capítulo iremos abordar o critério de Nyquist. Este critério permite aferir da estabilidade do anel de realimentação quando este contém não só elementos dinâmicos integradores, mas também *atrasos de transporte*.

A aplicação do critério de Nyquist faz parte dos métodos de projecto ditos nas *frequências*. O objectivo da próxima secção é aclarar os fundamentos desta designação.

¹ Um polinómio de grau n é mónico ou normado se o coeficiente de s^n é 1.

Figura 5-1 Lugar geométrico das raízes de $1 + K \frac{s+2}{s(s+1)} = 0$. A tabela à direita indica os valores das posições dos pólos representados na figura e o valor de *K* que os provoca. As setas indicam o sentido do deslocamento dos pólos, quando *K* aumenta.

5.1 Resposta em frequência de modelos lineares

Por comodidade, passaremos a designar como *sinais* as *evoluções de variáveis* de um modelo ou sistema. No domínio da variável complexa *s*, representam-se *sinais* e *funções de transferência* dos modelos lineares como transformadas de Laplace:

$$Y(s), H(s), Y_r(s), C(s), U(s)$$
.

Uma função de transferência é um caso particular de transformada de um sinal: ela é a transformada de Laplace da resposta ao impulso de Dirac do modelo ou sistema.

Se restringirmos na expressão F(s), da transformada de Laplace de uma qualquer função f(t), a variável independente s a tomar valores apenas no eixo imaginário, $\sigma = 0 \rightarrow s = j\omega$, obtemos a componente de F(s), que neste livro chamamos a *transformada de Laplace em* j ω :

$$F(j\omega) = F(s)|_{s=i\omega}$$
(5.5)

Se f(t) for um sinal, isto é, a expressão da evolução de uma variável, f(t) = y(t), consideramos $Y(j\omega)$ como mais uma representação da evolução da variável y, ao mesmo título que y(t) e Y(s), visto que podemos recuperar Y(s) de $Y(j\omega)$ a qualquer momento, invertendo a substituição de variáveis $s = j\omega$.

Se f(t) for uma resposta impulsional, f(t) = h(t), consideramos $H(j\omega)$ como um modelo, a que chamaremos *função de transferência em* j ω .

A interpretação e uso de um $F(j\omega)$ depende da estabilidade de F(s). Se F(s) for um sinal ou uma função de transferência estritamente estável, isto é, com todos os pólos no semiplano esquerdo, $F(j\omega)$ pode ser interpretada como a *transformada de Fourier* ou *espectro de frequência sinusoidal* de f(t).

Neste caso, a transformada $Y(j\omega)$, descreve o sinal y(t), como uma *soma de componentes sinusoidais* cuja frequência ω varia de $-\infty$ a $+\infty$. Para cada componente de frequência ω , o valor de $Y(j\omega)$ especifica a sua amplitude e fase inicial.

E, também neste caso, a *função de transferência em frequências*, $H(j\omega)$ descreve a relação entrada-saída como um operador que transforma a distribuição de amplitudes e fases de $U(j\omega)$ na distribuição de amplitudes e fases de $Y(j\omega)$. $H(j\omega)$ especifica para cada componente sinusoidal, quanto a sua amplitude vai ser amplificada ou atenuada e qual vai ser o desvio de fase inicial:

$$Y(j\omega) = H(j\omega) \cdot U(j\omega)$$
(5.6)

Se F(s) não for estritamente estável, as interpretações acima não são possíveis – pelo menos de imediato. Mas $F(j\omega)$ não deixa, por isso, de ser um modelo com interesse.

Transformada de Fourier

A transformada de Fourier F de uma função f(t), pode ser vista como uma restrição da transformada de Laplace ao eixo imaginário, $\sigma = 0 \rightarrow s = j\omega$. De acordo com a definição desta deverá ter-se:

$$\mathcal{F}(f(t)) = \mathcal{L}(f(t))|_{s=j\omega} = \int_{0}^{\infty} f(t) e^{-st} dt|_{s=j\omega} = \int_{0}^{\infty} f(t) e^{-j\omega t} dt$$
(5.7)

Um problema que esta aproximação apresenta, é o facto de um sinal ter transformada de Laplace não ser suficiente para que tenha transformada de Fourier. Com efeito, a transformada de Laplace de sinais causais – que estamos a supor – só converge para os valores de *s* pertencentes ao semiplano à direita da recta que contém o pólo com maior parte real. Isto significa que, se o sistema for marginalmente estável ou instável, o eixo imaginário não faz parte da região de convergência, logo a função $F(j\omega) = F(s)|_{s=j\omega}$ não corresponde ao integral em (5.7)².

Exemplo 5-2: convergência da transformada de Laplace do controlador PI.

O controlador proporcional-integral no erro tem por expressão $C(s) = K_p(s+1/T_i)/s$. O único pólo de C(s) está em 0. O único zero situa-se em $-1/T_i$. Para sinais causais, o integral definidor da transformada de Laplace do controlador só converge para o semiplano direito, o que exclui o eixo imaginário. A Figura 5-21 mostra a situação.

² É possível estabelecer F(s) porque a transformada de Laplace converge para a região do plano indicada, embora não para o eixo imaginário.

Figura 5-2 Região de convergência no plano *s* da transformada de Laplace da resposta impulsional do controlador PI com $C(s) = K \frac{s+1/Ti}{s}$.

De acordo com a definição da transformada inversa de Fourier, para uma $F(j\omega)$ estritamente estável, o sinal f(t) pode ser obtido ou recuperado de $F(j\omega)$ pelo integral de inversão:

$$f(t) = \mathcal{L}^{-1}(F(s))|_{s=j\omega} = \frac{1}{2\pi j} \int_{\sigma-j\infty}^{\sigma+j\infty} F(s) e^{st} ds|_{s=j\omega} =$$

$$= \mathcal{F}^{-1}(F(j\omega)) = \frac{1}{2\pi j} \int_{0-j\infty}^{0+j\infty} F(j\omega) e^{j\omega t} dj\omega$$

$$f(t) = \mathcal{F}^{-1}(F(j\omega)) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} F(j\omega) e^{j\omega t} d\omega$$
(5.9)

O factor constante $1/2\pi$ aparece porque a frequência está expressa em rad/s. A expressão (5.9) interpreta f(t) como uma soma infinita, do tipo integral³, de exponenciais imaginárias ou sinais sinusoidais em quadratura $e^{j\omega t} = \cos \omega t + j \sin(\omega t)^4$.

Cada exponencial imaginária de frequência ω contribuirá para a evolução f(t) com um peso dado pelo número complexo $F(j\omega)$. Este número tem módulo e fase:

³ A diferença entre um somatório de um número infinito de termos e um integral é que o número infinito de termos de um integral não pode ser enumerado, nem mesmo por uma sequência infinita.

⁴ A interpretação da presença de uma exponencial imaginária, num sinal que se observa na realidade, não deve causar dificuldades ao leitor ou à leitora, porque num sinal real as exponenciais imaginárias estão sempre presentes em pares conjugados, $(e^{j\omega t}, e^{-j\omega t})$, de que resultam sinusóides.

$$F(j\omega) = (|F(j\omega)|, \arg F(j\omega)).$$
(5.10)

Para todo o valor de ω , as funções $|F(j\omega)|$ e arg $F(j\omega)$ podem interpretar-se, respectivamente como a amplitude e a fase inicial da exponencial imaginária de frequência ω presente em f(t). A exponencial imaginária de frequência simétrica $-\omega$ contribuirá com a amplitudes $|F(-j\omega)|$ e arg $F(-j\omega)$.

Para um sinal ou resposta impulsional real, isto é que se pode observar na realidade, tem-se a importante relação:

$$F(-j\omega) = F^*(j\omega)$$
(5.11)

A função $F(j\omega)$ é simétrica em relação ao eixo real do plano s⁵. Pelo que:

$$|F(-j\omega)| = |F(j\omega)|$$

arg $F(-j\omega) = -\arg F(j\omega)$ (5.12)

Ou seja o módulo é uma função par da frequência e a fase é uma função impar. É comum exprimir estas funções como um par de funções da variável ω :

$$A(\omega) = |F(j\omega)|$$

$$\phi(\omega) = \arg F(j\omega)$$
(5.13)

(5.14)

Chama-se espectro de frequência (sinusoidal)⁶ de uma função f(t) a este par de funções. A Figura 5-3 apresenta um exemplo. $A(\omega)$ é o espectro de amplitudes e $\phi(\omega)$ é o espectro de fases. As relações em (5.12) têm uma escrita mais simples:

Figura 5-3 Espectro de frequência do sinal causal $y(t) = e^{-t}$ com transformada de Laplace Y(s) = 1/(s+1) e transformada de Fourier $Y(j\omega) = 1/(j\omega+1)$.

⁵ Como também o é F(s).

⁶ Transformadas cujas funções base não sejam sinusóides, darão origem a outros tipos de espectros.

$$G(\omega) = |H(j\omega)|$$

$$\phi(\omega) = \arg H(j\omega)$$
(5.15)

$$H(j\omega) = G(\omega)e^{j\phi(\omega)}$$

Então a resposta em regime permanente do modelo à entrada sinusoidal $u(t) = A\cos(\omega t + \alpha)$, com frequência ω , amplitude A e fase inicial ϕ é :

$$y_{rp}(t) = (G(\omega) \cdot A) \cos(\omega t + \phi(\omega))$$
(5.16)

Esta expressão também é válida para $\omega = 0$. Neste caso, deve notar-se que, por um lado, |H(j0)| = G(0) pode tomar, teoricamente, qualquer valor no intervalo $[0, \infty[; \text{ por outro}, \phi(0)$ só pode tomar os valores 0 (ganho positivo) ou $-\pi$ (ganho negativo).

Representação gráfica de funções de transferência em ja

É usual representar graficamente as funções de transferência em j ω . Para tal, e em vez do tipo de gráfico mostrado na Figura 5-3, prefere-se usar os traçados polares e os diagramas de Bode.

Os traçados polares consistem na representação de $H(j\omega)$ no plano complexo sem separação dos espectros de amplitude e de fase. Considerem-se as equações (5.15). Para cada valor de ω , elas definem um número complexo que podemos representar no plano complexo. Obtemos assim o que se chama um traçado polar de $H(j\omega)$. A Figura 5-4 apresenta em traçado polar a o espectro de frequência da Figura 5-3. Note-se que um traçado polar consistirá sempre em duas secções simétricas: uma correspondente a valores positivos de ω e outra a valores negativos de ω .

Figura 5-4 Traçado polar de $H(j\omega) = 1/(j\omega+1)$. Pode verificar-se que é constituído por uma circunferência com centro no ponto (1/2,0). A secção do traçado com argumento negativo corresponde a frequências positivas. Observe-se a secção simétrica correspondendo a frequências negativas. Observe-se também que para $\omega = 1$, $G(\omega) = 1/\sqrt{2} \approx 0,707$ e $\phi(\omega) = -\pi/4$. As setas indicam o sentido de frequência angular crescente.

Diagramas de Bode

Ao contrário dos traçados polares, os diagramas de Bode representam separadamente o módulo e o argumento de $H(j\omega)$ – logo os espectros de amplitude e de fase de $H(j\omega)$. A representação é feita apenas para frequências positivas, usando-se uma escala logarítmica de base 10. A utilização de uma escala logarítmica permite representar um intervalo alargado de frequências, em relação a uma escala linear. Numa representação logarítmica, intervalos de frequências em que os extremos tenham uma proporção constante, são representados por segmentos do mesmo comprimento. Chama-se *década* a um intervalo de frequências em que o extremo manor na proporção de 10 para 1. Chama-se *oitava*⁷ a um intervalo de frequências em que o extremo maior está para o extremo manor na proporção de 10 para 1. Chama-se *oitava*⁷ a um intervalo de frequências em que o extremo maior está para o extremo manor na proporção de 10 para 1.

Na representação da amplitude de $H(j\omega)$ nos diagramas de Bode utiliza-se uma medida logarítmica de base 10: o decibel, abreviado como dB. O decibel é usado como uma

⁷ Uma designação proveniente das escalas musicais em que um intervalo de duas notas em oitava ascendente corresponde a uma duplicação da frequência fundamental.

conveniente medida do ganho de sinais. E, de facto, já estabelecemos que o módulo de $H(j\omega)$ pode ser entendido como o ganho⁸ de amplitude à frequência do sinal sinusoidal de entrada para o sinal sinusoidal de saída, se $H(j\omega)$ for uma função de transferência em frequência. Na aplicação em estudo, tem-se:

Ganho logarítmico (dB) =
$$20 \log_{10} |H(j\omega)|$$
. (5.17)

Note-se que o ganho logarítmico será positivo, zero ou negativo, conforme a razão $|H(j\omega)|$ for maior, igual ou menor que 1.

Para o traçado de diagramas de Bode de um modelo é útil factorizar $H(j\omega)$ num produto de expressões. As expressões de ordem 0 e 1 para uma $H(j\omega)$ estável, podem tomar as formas constantes da Tabela 5-1. As expressões de ordem 2 serão estudadas mais adiante.

Tabela 5-1 Expressões de ordem 0 e 1 que se podem obter na factorização de uma função de transferência em j ω .

Expressões	Observações / designação corrente
K	Ganho constante a todas as frequências.
$\frac{1}{j\omega}$	Função de transferência em j ω do integrador puro.
jω	Função de transferência em j ω do derivador ideal.
$\frac{1}{j\omega T+1}$	Função de transferência em j ω de um pólo real em $-1/T$.
$j\omega T + 1$	Função de transferência em j ω de um zero real em $-1/T$.

Para as 3 primeiras expressões da tabela, os diagramas de Bode respectivos são constituídos por rectas. Com efeito tem-se, para todo o ω :

$$\begin{aligned} \left| K \right|_{dB} &= 20 \log_{10} K & \arg(K) = 0 \\ \left| \frac{1}{j\omega} \right|_{dB} &= \left| \frac{1}{\omega} \right|_{dB} = -20 \log_{10} \omega & \arg\left(\frac{1}{j\omega} \right) = \arg(-j\omega) = -\pi/2 . \end{aligned}$$

$$\left| j\omega \right|_{dB} &= \left| \omega \right|_{dB} = 20 \log_{10} \omega & \arg(j\omega) = \arg(j\omega) = \pi/2 \end{aligned}$$
(5.18)

Numa escala logarítmica de frequências, qualquer uma destas expressões é representada por uma recta. As expressões do módulo em dB do integrador puro e do derivador ideal são rectas com pendentes de, respectivamente, -20 dB / década e +20 dB / década. Todas as outras são constantes. Vejam-se as Figuras 5–5 a 5–7.

Para as 2 últimas expressões, os diagramas de Bode aproximam-se de rectas ditas assímptotas. Com efeito tem se para $\omega \ll \omega_c = 1/T$:

⁸ Por ganho, entende-se uma razão que pode ser maior, igual ou menor que 1.

$$\left|\frac{1}{j\omega T+1}\right|_{dB} \cong \left|\frac{1}{1}\right|_{dB} = 0 \qquad \arg\left(\frac{1}{j\omega T+1}\right) \cong \arg\left(\frac{1}{1}\right) = 0 \qquad (5.19)$$
$$\left|j\omega T+1\right|_{dB} \cong \left|1\right|_{dB} = 0 \qquad \arg\left(j\omega T+1\right) \cong \arg\left(1\right) = 0$$

E para $\omega \gg \omega_c = 1/T$:

$$\left|\frac{1}{j\omega T+1}\right|_{dB} \cong \left|\frac{1}{j\omega T}\right|_{dB} = -20\log\omega T \qquad \arg\left(\frac{1}{j\omega T+1}\right) \cong \arg\left(\frac{1}{j\omega T}\right) = -\frac{\pi}{2}$$

$$\left|j\omega T+1\right|_{dB} \cong \left|j\omega T\right|_{dB} = +20\log\omega T \qquad \arg\left(j\omega T+1\right) \cong \arg\left(j\omega T\right) = +\frac{\pi}{2}$$
(5.20)

A frequência ω_c é dita frequência de *corte* ou frequência de *quebra*. De facto, a assímptota para as baixas frequências e a assímptota para as altas frequências, do módulo de cada uma das expressões, intersectam-se à frequência ω_c . Para o traçado assimptótico do argumento ou fase de cada uma das expressões, usam-se as assímptotas definidas em (5.19) e (5.20) para $\omega \le 0, 1\omega_c$ e $\omega \ge 10\omega_c$. Entre esses valores de frequência aproxima-se o traçado real por segmentos de recta. Vejam-se os exemplos nas Figuras 5-8 e 5-9.

Uma vez obtidos os diagramas de Bode das expressões com que se factorizou $H(j\omega)$, a obtenção do diagrama de Bode para esta pode obter-se por soma dos diagramas dos factores. Com efeito tem-se que:

$$|H(j\omega)|_{dB} = |H_1(j\omega) \cdots H_n(j\omega)|_{dB} = |H_1(j\omega)|_{dB} + \cdots + |H_n(j\omega)|_{dB}$$

$$\arg(H(j\omega)) = \arg(H_1(j\omega) \cdots H_n(j\omega)) = \arg(H_1(j\omega)) + \cdots + \arg(H_n(j\omega)).$$
(5.21)

Exemplo 5-3: factorização da função de transferência em frequências do circuito RC passa-alto.

O circuito RC passa-alto tem por função de transferência:

$$H(s) = \frac{s}{s+a_0} \,. \tag{5.22}$$

A sua função de transferência em frequências pode escrever-se:

$$H(j\omega) = \frac{j\omega}{j\omega + a_0} = \frac{1}{a_0} j\omega \frac{1}{j(\omega/a_0) + 1} = \frac{j\omega T}{j\omega T + 1}, \text{ com } T = \frac{1}{a_0} .$$
(5.23)

O traçado do diagrama obter-se-á traçando o diagrama correspondente a cada um dos factores e realizando a sua soma.

Figura 5-5 Diagrama de Bode para um ganho constante a todas as frequências e igual a 10. Note-se que o valor de amplitude é simétrico do que resultaria para K = 0.1. Note-se também que o valor de K em nada muda o diagrama de fase.

Figura 5-6 Diagrama de Bode do integrador puro. O ganho em amplitude é uma recta com pendente de -20 dB/década. O desvio de fase é constante e igual a -90° . Se se aplicar à entrada de um integrador puro uma onda sinusoidal, obter-se-á na saída uma onda com uma componente sinusoidal atrasada de 90° em relação à de entrada.

Figura 5-7 Diagrama de Bode do derivador ideal. O ganho em amplitude sobe a +20 dB/década. A fase é constante e igual a +90°. Se se aplicar à entrada de um derivador uma onda sinusoidal, obter-se-á na saída uma onda adiantada de 90° em relação à de entrada. Observe-se a simetria entre este diagrama e o anterior.

Figura 5-8 Diagrama de Bode de um pólo com frequência de corte igual a 1. O ganho é constante a baixas frequências e cai a -20 dB/década, para altas frequências (altas e baixas frequências são definidas em relação à frequência de corte, não a valores absolutos). É aproximadamente de -3 dB à frequência de corte. A fase tende para 0 para "baixas" frequências e tende para -90° para altas frequências. É de -45° à frequência de corte. Comparar com o traçado polar da Figura 5-4 e com o gráfico da Figura 5-3.

Figura 5-9 Diagrama de Bode de um zero com frequência de corte igual a 1. O ganho é constante a baixas frequências e sobe a +20 dB/década, para altas frequências. É aproximadamente de +3 dB à frequência de corte. O desvio de fase tende para 0 para baixas frequências e tende para +90° para altas frequências. É de +45° à frequência de corte. Observar a simetria com o diagrama anterior.

Se um modelo LIT só tiver pólos reais, a sua função de transferência em j ω pode ser factorizada no produto de n+m funções, cada uma correspondendo a um pólo ou a um zero. As técnicas estudadas cobrem esta situação, porque o modelo de ordem n pode ser visto como n modelos de primeira ordem colocados em série.

Mas se o modelo tiver algum par de pólos (ou zeros) complexos conjugados a situação não é assim tão simples e deveremos reverter a um cálculo ponto a ponto a dos traçados dos diagramas de Bode para estes elementos que se apresentam como expressões de ordem 2. Aqui, iremos estudar o caso de um par estável de pólos complexos conjugados com frequência natural de oscilação ω_n , coeficiente de amortecimento ζ e ganho em regime permanente 1. É usual normalizar a função de transferência, dividindo ambos os membros por ω_n^2 :

$$H(j\omega) = \frac{1}{\frac{1}{\omega_n^2} (j\omega)^2 + \frac{2\zeta}{\omega_n} (j\omega) + 1}.$$
(5.24)

Quanto menor for o coeficiente de amortecimento ζ maior será a presença de um fenómeno que se designa por *ressonância*. A ressonância consiste no facto de, para sinusóides de entrada com frequências próximas do valor da frequência natural de oscilação,

a resposta em amplitude do modelo ser superior à que se observaria com $\zeta = 1$, podendo mesmo ter ganho superior a 0 dB. Neste caso, a sinusóide de saída terá uma amplitude superior á de entrada. Veja-se a Figura 5-10, para um exemplo em que $\omega_n = 1$ rad/s. Para modelos com outros valores da frequência natural de oscilação, a resposta em frequências é semelhante, o valor de pico da resposta em amplitude ocorrendo em torno do valor de ω_n .

Figura 5-10 Diagramas de Bode do modelo $y'' + 2\zeta y' + y = u$ para diferentes valores do coeficiente de amortecimento ζ . O pico da resposta em amplitude aumenta com a diminuição de ζ , assim como a "rapidez" da "mudança de fase". Na figura estão representados os traçados correspondentes a $\zeta \in \{1, 0.7, 0.5, 0.3, 0.1\}$. O traçado em amplitude aproxima-se de uma assímptota com pendente a -40 dB/década quando $\omega \rightarrow \infty$

5.2 Critério de estabilidade de Nyquist

Tendo estabelecido, na secção anterior, os conceitos da análise em frequência necessários ao estudo da estabilidade pelo critério de Nyquist, passamos agora a abordar este.

O problema que se tem de resolver é o seguinte. Dado o sistema realimentado representado na Figura 5-11, e do qual se conhece H(s), determinar um controlador C(s) de tal forma que o sistema realimentado seja estritamente estável. Pretende-se obter este resultado, a partir apenas do conhecimento de C(s) e H(s), sem estabelecer quais são os pólos do anel de realimentação usando a expressão da função de transferência do anel.

Figura 5-11 Modelo de sistema realimentado para estudo da estabilidade.

Podemos sempre escrever C(s) = KC'(s), em que K é uma constante de ganho e C'(s) é uma função racional mónica. A função de transferência do anel em ciclo aberto, pode escrever-se como C(s)H(s) = KC'H(s). A equação que descreve a dinâmica do sistema é então:

$$Y(s) = \frac{KC'H(s)}{1 + KC'H(s)}Y_r(s) + \frac{1}{1 + KC'H(s)}P(s)$$
(5.25)

Segue-se, como já foi dito, que os pólos do anel ou as raízes da sua equação característica

$$1 + KC'H(s) = 0 (5.26)$$

se devem situar todos no semiplano esquerdo. Se algum número complexo p_i for raiz da equação ou pólo do anel, devemos ter para $s = p_i$:

$$-\frac{1}{K} = C'(p_i)H(p_i).$$
 (5.27)

Imaginemos agora que C'H(s) é um projector do plano complexo *s* para um segundo plano complexo *s'*. Que é que C'H(s) projecta? A resposta é: a sua própria imagem. C'H(s)associa a cada ponto *s_i*, no plano *s*, um ponto no plano *s'* de acordo com:

$$C'H(s): s_i \mapsto C'H(s_i). \tag{5.28}$$

Como exemplo, ponhamos o projector a funcionar para a função C'H(s) = 1/(s+1), mas projectemos apenas o eixo imaginário. Que imagem é que vamos ver no plano s'? A imagem do eixo dada por C'H(s), ou seja o traçado polar da função $C'H(j\omega)$! Sendo que neste caso $C'H(j\omega) = 1/(j\omega+1)$. Veja-se a Figura 5-12.

Agora, como podemos ver do exemplo, o contorno desenhado pela projecção divide o plano s' em duas regiões. Uma destas regiões é a projecção do semiplano direito de s, enquanto que a outra é a projecção do semiplano esquerdo de s.

Figura 5-12 Ilustração da ideia de CH(s) funcionar como um "projector" entre o plano *s* e um plano *s*'. Neste caso, CH(s) = 1/(s+1) e o projector só está a projectar o eixo imaginário. A projecção do eixo imaginário é o traçado polar de $CH(j\omega) = 1/(j\omega+1)$, veja-se a Figura 5-4. A região sombreada no plano *s*'é a projecção do semiplano esquerdo do plano *s*.

Este resultado é geral: sendo C'H(s) uma função racional causal qualquer, o contorno desenhado pela projecção do eixo imaginário divide s' em duas regiões correspondentes às projecções dos semiplanos direito e esquerdo de *s*.

A chamada regra da mão direita permite-nos saber qual das regiões é a projecção do semiplano direito. Colocamos a mão direita sobre s', estando o polegar sobre o contorno e o indicador a apontar no sentido de ω crescente. Então a palma da mão está sobre a projecção do plano *direito*.

A importância desta ideia da "projecção" quanto à estabilidade pode ser bem apreciada se considerarmos de novo equação (5.27). Ela diz-nos que se 1+KC'H(s)=0 tiver alguma raiz p_i no semiplano direito, então, o ponto -1/K em s' pertence à projecção do semiplano direito. Neste caso, o sistema tem pelo menos um pólo no semiplano direito e é instável. Claro que se o sistema tiver pelo menos um pólo p_j no semiplano esquerdo, o ponto -1/K também pertence à projecção do semiplano esquerdo: as projecções dos dois planos intersectam-se.

Visto da perspectiva do nosso objectivo, que é obter um anel de realimentação estritamente estável, chegamos assim à seguinte expressão do critério de Nyquist:

- Para que o sistema realimentado, com equação característica do anel 1 + KC'H(s) = 0, seja estritamente estável, o valor do ganho *K* deve ser escolhido de tal forma que o ponto -1/K pertença *apenas* à projecção em s' do semiplano esquerdo de s definida por $C'H(j\omega)$.

A projecção em s' do eixo imaginário (positivo) de s definida por $C'H(j\omega)$ é chamada o *contorno* de Nyquist.

Exemplo 5-4: contorno de Nyquist de sistema com 3 pólos estáveis em CH(s).

Suponha-se que um sistema realimentado tem função de transferência do anel:

$$CH(s) = \frac{200}{(s+1)(s+2)(s+5)}.$$
(5.29)

O traçado polar de $CH(j\omega)$ ou o seu contorno de Nyquist apresenta-se na figura seguinte.

A regra da mão direita diz-nos que a projecção do semiplano direito se encontra dentro do contorno. Ampliando a região de interesse obtemos:

O ponto no eixo real onde se situa a fronteira da projecção do semiplano direito é s = -1.57. Para o sistema ser estável o ponto -1/K deve estar à esquerda deste ponto, ou seja, -1/K < -1.57. Donde se retira que para o sistema realimentado ser estritamente estável, se deve ter K < 0.64. Acima deste valor o sistema realimentado torna-se instável.

Margens de ganho e de fase

Utilizando o contorno de Nyquist é possível definir duas quantidades que nos informam da estabilidade relativa do sistema, isto é, quão perto (ou quão longe) o sistema está de se tornar instável, uma vez escolhido um valor K_0 para K. Estas quantidades são a margem de ganho e a margem de fase. A Figura 5-13 mostra a sua interpretação gráfica.

Figura 5-13 Ilustração dos conceitos de margem de ganho e de margem de fase.

Define-se *margem de ganho MG* como a razão entre o ganho crítico, ou seja, o ganho estático de CH(s) suficiente para tornar o sistema marginalmente estável, e o ganho escolhido K_0 . A margem de ganho diz-nos quanto pode variar quer K, quer o ganho estático de $H(s)^9$, até o sistema atingir o limiar da instabilidade.

Seja ω_{c1} a (primeira) frequência de inversão de fase (ou frequência de cruzamento) de *C'H(s)* definida por:

$$\arg C'H(j\omega_{c1}) = -\pi \land \forall \omega < \omega_{c1}, \arg C'H(j\omega_{c1}) \neq -\pi.$$
(5.30)

Para o sistema ficar marginalmente estável devemos ter

$$K[C'H(j\omega_{c1})] = 1.$$
 (5.31)

⁹ Esta variação, tanto pode reflectir variação nos parâmetros de H(s), como erros cometidos na modelização do processo, que façam com que o H(s) real seja diferente do H(s) que se está a pressupor no projecto.

$$K_{cr} = \frac{1}{|C'H(j\omega_{c1})|}.$$
 (5.32)

Então a margem de ganho é:

$$MG = \frac{K_{cr}}{K_0}.$$
(5.33)

A margem de fase MF diz-nos qual a variação da fase de CH(s) suficiente para tornar o sistema marginalmente estável, para o ganho escolhido K_0 .

Seja ω_{u1} a (primeira) frequência de ganho unitário de CH(s) definida por:

$$\left|K_{0}C'H(j\omega_{u1})\right| = 1 \land \forall \omega < \omega_{u1}, \left|K_{0}C'H(j\omega_{u1})\right| \neq 1.$$
(5.34)

Reparemos que a esta frequência se tem:

$$|C'H(j\omega_{u1})| = \frac{1}{K_0}.$$
 (5.35)

Para o sistema ficar marginalmente estável devemos ter

$$\arg(C'H(j\omega_{u1})) = -\pi.$$
(5.36)

Então a margem de fase é:

$$MF = \pi + \arg(C'H(j\omega_{\mu 1})).$$
(5.37)

Estabilidade pelos diagramas de Bode

Se uma função de transferência não tiver nem pólos, nem zeros no semiplano direito, diz-se que é de *fase não-mínima*. Diz-se que é de fase mínima no caso contrário. Se um anel CH(s) for de fase mínima e só tiver uma frequência de inversão de fase ω_c , isto é se só existir uma frequência ω_c para a qual $\arg(C'H(j\omega_c)) = -\pi$, então o estudo da estabilidade pode fazer-se usando os diagramas de Bode, de uma forma mais cómoda e mais precisa do que usando o contorno de Nyquist¹⁰.

A utilização mais comum dos diagramas de Bode nesta situação é determinar o valor $K = K_0$ para que as margens de ganho e de fase tenham valores convenientes. Usualmente requer-se que $MF \ge 2$ e $MG \ge \pi/4$. Também se costuma dizer $MF \ge 6$ dB e $MG \ge 45^\circ$. Estas últimas formas de expressão têm a sua razão de ser no facto de $20\log_{10} 2 \cong 6$ dB e

¹⁰ Isto não significa que os diagramas de Bode não se possam usar para anéis cuja função de transferência é de fase não-mínima ou que apresentam mais do que uma frequência de inversão de fase. Mas, neste caso, o estudo é mais difícil.

 $\pi/4 = 45^{\circ}$.

Para um dimensionamento de *K* de tal forma que MG = 2 ou MG = 6 dB:

- i) Traçam-se os diagramas de Bode de $C'H(j\omega)$.
- ii) Determina-se a frequência de inversão de fase ω_c , dada por arg $C'H(j\omega_c) = -\pi$.
- iii) Determina-se $|C'H(j\omega_c)|$ em dB. O ganho crítico em dB é então $K_{cridB} = -|C'H(j\omega_c)|_{idB}$.
- iv) Estabelece-se $K = K_0$ de forma a ter-se $K_{cr|dB} K_{0|dB} = 6 \text{ dB}$. Note-se que isto é o mesmo que estabelecer $K_0 = 0.5K_{cr}$ e por consequência $|CH(j\omega_c)|_{dB} = -6 \text{ dB}$ ou $|CH(j\omega_c)| = K_{cr}/2$.
- v) Verifica-se se o valor da margem de fase, para o valor de K_0 encontrado, é satisfatório. Se não for, ajusta-se o valor de K_0 .

Para um dimensionamento de *K* de tal forma que $MG \ge \pi/4$ ou $MG \ge 45^\circ$:

- i) Traçam-se os diagramas de Bode de $C'H(j\omega)$.
- ii) Determina-se a frequência ω_u , dada por $\arg C'H(j\omega_u) = -\pi + \pi/4 = -135^{\circ}$.
- iii) Determina-se $K_{1u} = |C'H(j\omega_u)|$ em dB.
- iv) Estabelece-se $K = K_0$ de forma a ter-se $K_{1u|dB} K_{0|dB} = 0$ dB. Note-se que isto é o mesmo que estabelecer $K_0 = 1/K_{1u}$ e por consequência $|CH(j\omega_u)|_{dB} = 0$ dB ou $|CH(j\omega_u)| = 1$.
- v) Verifica-se se o valor da margem de ganho, para o valor de K_0 encontrado, é satisfatório. Se não for, ajusta-se o valor de K_0 .

Exemplo 5-5: estabelecimento da margem de ganho ou da margem de fase de um sistema realimentado.

A Figura 5-14 seguinte mostra o diagrama de Bode para um anel com função de transferência:

$$C'H(s) = \frac{10}{s(s+2)(s+5)}$$
(5.38)

A sua função de transferência em j ω é constituída por um integrador puro e dois pólos reais, respectivamente com frequências de corte em 2 e 5 rad/s:

$$C'H(j\omega) = \frac{10}{10} \frac{1}{j\omega} \frac{1}{j\omega/2 + 1} \frac{1}{j\omega/5 + 1}$$
(5.39)

Da figura retira-se que $\omega_c \approx 2.2 \text{ rad/s}$, $K_{c|dB} \approx 18 \text{ dB}$. Logo para termos MG = 6 dB, $K_0 \approx 12 \text{ dB}$, ou seja, $K_0 \approx 4.0$. Para se verificar o valor da margem de fase resultante podemos usar a mesma figura, raciocinando da seguinte forma. Se $K_0 \approx 12 \text{ dB}$, então o ponto do traçado de amplitude com $|C'H(j\omega_u)|_{dB} = -12 \text{ dB}$ passará a

Figura 5-14 Determinação da margem de ganho para um sistema realimentado com $C'H(s) = \frac{10}{s(s+2)(s+5)}$ e verificação da margem de fase para uma margem de ganho de 6 dB.

Este valor de margem de fase corresponderá a uma resposta muito oscilatória do sistema realimentado. Para termos uma margem de fase de 45 °, considere-se o traçado na Figura 5-15. Assumindo que $\omega_u \approx 1.2$ rad, obtemos

$$|C'H(j1.2)| = \frac{10}{1.2(1.2^2 + 4)(1.2^2 + 25)} \approx 0.7.$$
 (5.40)

Assim, fixando $K = K_0 = 1/0.7 \approx 1.43$ obter-se-á a margem de fase pretendida. Note-se que neste caso, a margem de ganho será de aproximadamente 15 dB, visto que $20 \log_{10} 1.43 \approx 3.1$.

Figura 5-15 Determinação da margem de fase de 45° para um sistema realimentado com $C'H(s) = \frac{10}{s(s+2)(s+5)}$.

5.3 Exercícios

5.1 Um circuito RC passa-alto é descrito pela equação diferencial:

$$0,01\frac{dv_o}{dt} + v_o = \frac{dv_i}{dt}$$

- a) Determine a frequência de corte do circuito e o valor do ganho em regime permanente para a frequência de 50 rad/s.
- b) Determine a expressão da resposta em regime permanente do circuito à entrada $\begin{cases} t \ge 0 \rightarrow v_i(t) = 2 \operatorname{sen}(50t) \\ t < 0 \rightarrow v_i(t) = 0 \end{cases}$.
- 5.2 Esboce em papel milimétrico o traçado polar das funções de transferência:
 - a) do integrador puro;
 - b) de um oscilador amortecido com frequência natural de oscilação 1, coeficiente de amortecimento 0.5 e ganho em regime permanente 1;
 - c) do derivador real com frequência de corte igual a 100 Hz.

5.3 Trace em papel semilogarítmico os diagramas de Bode assimptóticos e esboce aproximadamente os diagramas reais das funções de transferência em j ω dos seguintes modelos:

a)
$$H(s) = \frac{4(s+5)}{s}$$
 b) $H(s) = \frac{20s+20}{s+10}$ c) $H(s) = \frac{5(s+16)}{s+2}$ d) $H(s) = \frac{s}{(s+1)^2}$ e) $H(s) = \frac{5}{s(s^2+0.4s+4)}$

5.4 A inevitável existência de capacidades entre espiras de ouma bobina e o facto do fio com que se enrola a bobina ter resistência não-nula, faz com que um indutor real tenha efectivamente como modelo eléctrico o diagrama que se mostra na figura ao lado.

- a) Determine a função de transferência $Z_R(s) = V(s)/I(s)$ do indutor real.
- b) Suponha que os valores dos parâmetros de um indutor real são: L = 1 mH, $R = 10 \text{ m}\Omega$, C = 1 nF. Compare as respostas em frequências do indutor real e do indutor ideal. Para tal trace os diagramas de Bode de $Z_R(j\omega)$ do indutor real e de $Z_I(j\omega) = j\omega L$ do indutor ideal.
- **5.5** Suponha um sistema realimentado com a configuração apresentada na figura. Recorrendo ao critério de Nyquist mostre que o sistema é estável para qualquer valor de *K* positivo.

5.6 Um sistema realimentado negativamente é descrito por um diagrama de blocos de realimentação unitária com função de transferência KH(s) do anel de realimentação, sendo K um parâmetro de ganho ajustável no intervalo $[0, +\infty[$. Na figura seguinte apresentam-se os contornos de Nyquist de KH(s) – traçados polares de $KH(j\omega)$ – para os valores de K indicados em cada contorno..

- a) Baseando-se no critério de Nyquist, diga, para cada valor de *K* indicado, se o sistema realimentado é estritamente estável, marginalmente estável ou instável.
- b) Baseando-se nos traçados apresentados diga que intervalos de valores de *K* definem a estabilidade do sistema e classifique a estabilidade do sistema em cada intervalo.

- 5.7 Um sistema realimentado pode ser representado pelo diagrama de blocos que se representa na figura ao lado.
 - a) Determine a função de transferência do anel (exterior) de realimentação.
 - b) Utilizando o contorno de Nyquist mostre que o sistema pode tornar-se instável para valores de ganho *K* suficientemente elevados.
 - c) Determine *K* de forma a ter uma margem de ganho de 2. Nota: determine numericamente $\omega_{c1} = |H(j\omega_{c1})|$.
 - d) Para o valor de K determinado na alínea anterior, determine a margem de fase. Nota: determine numericamente $\omega_{u1} \in |H(j\omega_{u1})|$.
- 5.8 Repita o exercício anterior usando diagramas de Bode.
- **5.9** Utilizando diagramas de Bode determine os valores de *K* que para os seguintes anéis de realimentação CH(s) dão margens de ganho de 2 e margens de fase de 45°. (Nota: se quando $\forall \omega$, arg $C'H(s) > -\pi$, a margem de ganho será infinita, mas o mesmo não acontece para a margem de fase.)

a)
$$CH(s) = K \frac{10(s+1)}{s(s+2)(s+5)}$$
 b) $CH(s) = K \frac{10(s+2)}{s^2(s+4)(s+8)}$ c) $CH(s) = K \frac{10}{s+5} e^{-s^2}$

No exercício c) é necessário recordar que o elemento de atraso puro $e^{-j\omega T_a}$ apresenta $|e^{-j\omega T_a}|=1$ e arg $e^{-j\omega T_a} = -\omega T_a$. O seu traçado de fase numa escala logarítmica não é, nem assimptoticamente, uma recta, sendo necessário calculá-lo ponto a ponto.