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Abstract—This article reviews various selected literature on rehabilitation robotics. The literature
was obtained mainly from journals and conference proceedings of the robotic, rehabilitative or
biomedical engineering associations. It has been classi� ed into three categories: rehabilitation robot
systems, evaluation and key technologies. Commercially available robots, new projects, users’
experiences and requirements, and fundamental research are introduced. A comprehensive list of
references is provided.
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1. INTRODUCTION

Rehabilitation robotics is often only thought of as robotic aids to assist people hand-
icapped by a manipulative disability [1]. However, recent research in rehabilitation
robotics reveals more extended possibilities for the use of robot technology in reha-
bilitation [2]. Hillman de� ned rehabilitation robotics as the application of robotic
technology to the rehabilitation needs of people with disabilities as well as the grow-
ing elderly population [3]. This extended de� nition includes augmentative mobility,
robots for therapeutic training and robots for help care-givers. In this paper, the ex-
tended de� nition is adopted.

A large number of industrial robots are used to manufacture products worldwide.
On the contrary, only hundreds of rehabilitation robots are practically used by peo-
ple with disabilities [4]. This indicates that successful rehabilitation robots cannot
be realized with application of only industrial robotic technologies. Rehabilitation
robotics has many technical and non-technical problems. First, cost and mainte-
nance are the most serious problems for popularization. Second, rehabilitation ro-
bots are used close to users and because of this proximity accidents can happen. To
avoid injury to the end user, recent rehabilitation robots are designed to operate with
extremely low power. This means that they can only work with light goods and can
only move very slowly. Consequently, the tasks they can perform are very limited.
Third, most users have physical or mental handicaps, making it dif� cult for them
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to operate a robot. An effective human interface is one of the key technologies for
rehabilitation robotics. At present, the only way to adapt an interface to each user’s
various needs is through trial and error. Systematic adaptation should be developed
in the future.

This paper presents a review of the recent literature devoted to the above problems
in the area of rehabilitation robots. The review is divided into three inter-related
sections: (1) rehabilitation robot systems, (2) evaluation and user requirements,
and (3) key technologies for the future. In particular, the � rst section describes
augmentative manipulation systems, augmentative mobilities, robots for therapeutic
training and robots to assist help care-givers. The second section presents adaptation
to individual users and the evaluation of different devices. The third section deals
with basic research concerning human interfaces and safety.

2. REHABILITATION ROBOT SYSTEMS

2.1. Augmentative manipulation

2.1.1. Wheelchair robots. One of the major aims of rehabilitation robots is to
pick and place objects. If the robots can be mounted on wheelchairs, this will be
convenient for the wheelchair users. The most famous robot arm mounted on a
wheelchair is the Manus [5–7], which has more than 100 users worldwide [8]. The
Manus is also used as a base system in many research projects [9–15]. Many other
robots have also been developed, such as the Helping Hand [16], a wheelchair-
mounted robot from the Bath Institute of Medical Engineering [17, 18], the
PLAYBOT for children [19], the KARES [20, 21], the QA manipulation Arm [22],
the IMMEDIATE [23, 24], the Chamaeleon [25], a manipulator from Tokyo Denki
University [26] and a project from the Bulgarian Academy of Science [27].

A manipulator mounted on a wheelchair should have at least 6 d.o.f. for multipur-
pose functionality. Operating those degrees of freedom is sometimes complex and
troublesome for users. Some robots were designed to be operated by task-oriented
commands, such as ‘pick up the box’ or ‘pour the milk’. Those robots still have dif-
� culties performing these tasks. Practical robots such as the Manus now rely upon
users for detailed operations.

2.1.2. Workstations. The robotic workstation is mounted in a � xed position such
as on a desk. As it performs speci� c tasks such as food preparation, feeding,
handling � oppy disks and books, and telephoning, users can operate it easier than
a wheelchair robot. Because the objects which are handled by the robot should be
set precisely, it is dif� cult in practice to adapt to the requirements of each user. The
DeVAR [28, 29], the ProVAR [30, 31], the RAID [32, 33], the MASTER and the
AFMASTER [34, 35] are included in this category.

2.1.3. Powered feeders. In general, a robot for a single task can be used more
easily and be cheaper than a multipurpose robot. The Handy 1 [36, 37] is the best-
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selling rehabilitation robot in the world [38]. It allows disabled people, who would
have to be fed by someone else, to eat a normal meal at their own pace. It also
has optional functions for brushing teeth, shaving and applying make up. Easy
operation allows even children and people with cognitive disabilities to use it. The
ISAC [39, 40] and My Spoon [41] were also developed as feeding robots.

2.1.4. Mobile robots. The Care-O-bot [42], the WALKY [43, 44], the RETIMO
[45], the ROMAN [46], the MOVAID [24, 47], URMAD [24, 48], a trolley-
mounted robot from the Bath Institute of Medical Engineering [49], a mobile robotic
platform form the University of Bremen [50], a health care robot from the California
Institute of Technology [51] and a mobile robot developed by Shibaura Institute of
Technology [52] are typical examples of mobile robots with a manipulator. They
move to perform various tasks semi-autonomously. They are not practical yet
because they need an extremely high level of intelligence.

2.1.5. Robotic orthoses. Powered upper-limb orthoses are a kind of rehabili-
tation robot mounted on a user’s upper limb. MULOS [53, 54], a project of the
AI DuPont Hospital for Children and Drexel University [55, 56], a power-assisted
robotic orthosis developed by Ritsumeikan University [57, 58], a wire-driven ortho-
sis from MITI [59] and a wire-driven orthosis developed by Kanagawa Institute of
Technology [60] are examples of orthoses developed to date. Tremor suppression
is a typical application for robotic orthoses [61, 62]. Most of the robotic orthoses
were proposed to work also as therapeutic training machines. Because the ortho-
sis should not apply excessive force and should be precisely adjusted to the user’s
upper limb, it is more dif� cult to develop than other types of rehabilitation robots.

2.1.6. Robotic rooms. A robotic room is a new concept proposed by Sato [63]
where a functional living room assists the disabled or the elderly. The robotic
room consists of multiple surrounding sensors to communicate with users by means
of behavior media as well as multiple actuators to accommodate users. Casals
proposed a robotized kitchen CAPDI which could contain different kinds of adapted
elements [64]. They are not practical yet because of their high cost and the
dif� culties of adaptation.

2.2. Augmentative mobility

2.2.1. Robotic wheelchairs. Two kinds of robotic wheelchairs have been devel-
oped: one is a high-performance wheelchair, such as a wheelchair which can tra-
verse steps, and the other is a semi-autonomous wheelchair which can be operated
easily. In the � rst category, a gyro-balanced wheelchair was unveiled which could
rear up on two wheels, climb stairs and traverse uneven terrain [65]. As far as I
know, no technical report has been published; however, it was reported by the NBC
news in 1999 that such a device would be commercialized by Johnson & John-
son within 24 months. Lawn [66] and Miyagi [67] also proposed wheelchairs for
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climbing stairs. Omnidirectional wheelchairs, such as the OMNI [68], the wheel-
chair developed by Fern University Hagan [69, 70], and a hybrid wheelchair / bed
system [71] are other examples of high-performance wheelchairs.

There were various reports about a semi-autonomous wheelchair which detected
obstacles and assisted users in steering: the VAHM wheelchair [72, 73], the
Wheelesley [74, 75], the Senario [76, 77], the NavChair [78, 79], the MAid [80, 81],
the Luoson [82], the TAO [83], the Bremen Autonomous Wheelchair [84], the
VAHM project [85], a wheelchair designed by the University of Alcalá [86], a
wheelchair from the Polytechnic University of Madrid [87], a wheelchair developed
by Northeastern University [88], a wheelchair developed by the University of
Texas at Austin [89], Bühlmeier’s wheelchair robot [90], Trahanias’s robotic
wheelchair [91], a wheelchair from the University of Ancona [92], a wheelchair
from Osaka University [93] and a wheelchair of the University from Portsmouth
[94, 95]. However, the aim of most of the projects was research on control methods.
Only a few of these wheelchairs were practical.

2.2.2. Mobility aids for visually impaired people. Because of a lack of recog-
nition of environmental information, visually impaired people have dif� culties in
independent walking. In order to overcome these dif� culties, rehabilitation robots
have been developed, which detected obstacles and provided navigational assis-
tance. The PAM-AID [96–98], the Navbelt [99], the HITOMI [100, 101], the
GuideCane [102] and the Robotic Cane [103] were typical systems. PAM-AID
and HITOMI are mobile robots like walkers. The Navbelt is a wearable system,
while the GuideCane and the Robotic Cane are used like a cane.

2.2.3. Walking support systems for the elderly. Walking is an essential activity
for daily living. Rehabilitation robots which assist elderly people in standing up and
in sitting down, support their weight in walking, and avoid their falls were proposed.
Hitachi Ltd developed a walker-type power-assisted walking support system which
moved smoothly by application of a weak force [104]. Suzuki developed a hoist-
type system, which was used indoors [105].

2.3. Therapy robots

Rehabilitation robots have been applied to physical and occupational therapy. Most
of the research was for upper-limb exercises. Some tried to perform existing
training methods by robots for taking a load off of the therapist, others aimed
at new therapies which can be performed only by robots. A project of the
University of California, Berkeley [106], the MIT-Manus [107–109], the ARM
Guide [110], a project of VA Palo Alto HCS [111, 112], a research effort at Leeds
University [113, 114], a project from the University of Delaware [115], a project
from Loughborough University [116], and a system from Harvard University and
Boston Biomotion Inc. [117] were typical projects. For lower-limb exercises, the
REHABOT for gait training [118] and the TEM [119, 120] were proposed.
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2.4. Robots for help care-givers

Rehabilitation robots operated by nurses or care-givers, such as robotic devices
that move a patient’s entire body, were designed not for independent living of the
disabled and the elderly, but for lightening the heavy burden of care-givers. This
type of robot was mainly proposed in Asian countries [121–123]. As robots have
to apply forces to the disabled or the elderly in many caring tasks, safety is the most
important factor.

Robots for meal delivery, � oor cleaning or bed making can be included in this
category [124, 125]. Such robots do not interact with patients; however, they
contribute to improve the quality of patients’ lives by supporting care-givers.

3. ADAPTATION, EVALUATION AND USER REQUIREMENTS

Rehabilitation robots should be evaluated by users. At an early stage, rehabilitation
robots were evaluated by only a few users for a short period. However, some
rehabilitation robots have now been commercialized and hundreds of people with
disabilities use them practically. They have proven the effectiveness of these
rehabilitation robots in improving the quality of their lives. They have shown
unexpected ways of use, their veiled requirements and problems of the systems. The
reports about experimental and practical usage of rehabilitation robots are treasure
boxes to � nd hints for developing better systems.

Many papers evaluating of the Manus have been published. Gelderblom inter-
viewed 13 users of the Manus and tried to make a user pro� le [126]. The results
were informative. The Manus is often used to eat or drink, but very seldom for the
preparation of food or drinks. It is hardly used during washing. It is often used
during the use of a handkerchief, brushing of teeth and using an electric razor, and
for scratching. It is not used while dressing or undressing, but it is used in adjusting
clothing or glasses. Only two of the users surveyed used the Manus when using the
toilet. Half of the users used the Manus for taking mediation. It is used for applying
a stamp with the users’ signature, using a public phone and as an aid for reading.
The report also showed problems associated with the Manus: its small power, small
workspace, slow speed, less precise control, the expanded width of the combination
of wheelchair and Manus, etc.

Rose analyzed 27 Manus users [127]. Of these users, 78% could use the Manus
after 2 days of learning. Contrary to Gelderblom’s result, 81% of the users said
that the velocity was good; 70% thought that the noise level was low, 52% used the
Manus system without problems of maneuverability, 70% thought that the Manus
could be useful at home and 63% for leisure. With regard to the arm, the Cartesian
mode was most often used by users, the joint mode and cylindrical mode could be
used, and the drinking mode was nice. The interface and maintenance were also
discussed.

Eftring evaluated the Manus in a trial where eight people with disabilities used
it for 1 or 2 days [128]. The results were that only one user wanted to have the
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Manus, and the others thought it was too large, too heavy and too dif� cult to control.
However, four users would like the Manus if it the following points were improved:
the interface, the method of mounting to a wheelchair, the size, the weight and
the payload. Half of the users thought it was too slow. Most of the dif� culties
encountered when using the Manus were caused by the interface. Bühler [129] and
Zeelenberg, who was the father of a Manus user [130], also pointed out that most of
the problems with the Manus were related to the input device.

Topping, who had developed the Handy 1, evaluated it and its new applica-
tions [131–133]. Three disabled people used Handy 1 for hygienic tasks, i.e. wash-
ing, shaving and teeth cleaning, and they enjoyed the experience of being able to
wash, to clean their teeth and to shave themselves, and thought that the Handy 1
systems would be greatly bene� cial to them. Three children with cerebral palsy
tried to use the Handy 1 to draw and found problems due to some limitations in the
current design of the system. The Handy 1 was not suitable for some users; one
found great dif� culty in seeing the control LEDs because of his reclining position
and the present Handy 1 activities were not challenging enough for another, which
might lead to boredom and frustration.

O’Connell, who has cerebral palsy, reported her experiences using the Handy 1
for 3 years [134]. The Handy 1 was the best machine for her to feed herself, mainly
because the amount of movement required to operate it was minimal. Also, she
found that the Handy 1 provided a sort of physiotherapy for her. Her posture
improved, and her movements felt more controlled and less jerky than when she
had � rst begun using the system. She thought that the £4000 she spent was not a
waste of money.

Pinnington and Hegarty evaluated the Handy 1 system [135, 136]. In their study,
20 children with severe neurological impairments had used the Handy 1 for eating
by themselves for more than 9 months. All of the children, except two, could use the
robot. In one case, dif� culties arose because the child had insuf� cient head control
in the midrange of neck � exion, while the other had insuf� cient control of trunk
� exion in sitting. Three children needed encouragement to attend and frequent
prompting was necessary to press the switch. Reliability of the device was also
reported; technical faults occurred (a defective plug, an incorrectly aligned cog and
wire pulleys), and numerous problems were experienced with the durability of the
commercially bought stalk wobble switches and goosenecks which were used as
input devices. Their results showed that the robot demanded the active participation
of the user in the food-delivery process, and no change occurred in the amounts of
energy and protein consumed. The negative factors of increased meal duration and
reduced eating ef� ciency outweighed the advantages for their children.

Other rehabilitation robots for augmentative manipulation, such as the Helping
Hand [137], the Master [138, 139], the RAID [140], the DeVAR [141], the In-
ventaid [142], the trolley mounted robot from the Bath Institute of Medical Engi-
neering [143], the Middlesex Rehabilitation Robotic Arm [144], the OSU/ASEL
workstation [145] and the Neil Squire Foundation robotic-assistive appliance [146],
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have also been evaluated. A trial adaptation of a commercially available robotic arm
for children with physical disabilities to interact in a play and exploration activity
was also reported [147].

Rehabilitation robots have sometimes been evaluated by questionnaires or inter-
views as before. Subjective evaluation is important to reveal the users’ require-
ments, while quantitative analysis is useful to know the effectiveness or the perfor-
mance of the robots. From this point of view, some kinds of standardized tests or
evaluation procedures have been proposed [148–151]. With regard to the human
interface, quantitative evaluation methods of upper-arm mobility have also been
proposed [152, 153].

There is a small amount of literature concerning evaluation for augmentative
mobility, which was mainly written by the developers. A report that two persons
with multiple disabilities used a mobile robot [154], the automatic adaptation in the
NavChair wheelchair [155] and the evaluation of the PAM-AID for frail and elderly
visually impaired persons [156] were published.

The economics of rehabilitation robots were also analyzed [4, 157, 158]. There are
many potential users, although the market is predicted to grow slowly. For explosive
growth in the market, major technical and cost breakthroughs are necessary.

4. KEY TECHNOLOGIES

4.1. Safety

Robots are essentially dangerous and, with their use, absolute safety does not exist.
These two facts lead to dif� culties of avoiding accidents involving rehabilitation
robots. However, basic technology for minimizing the risks should be clari� ed.
Today, safety should be the prime concern in the design of robots. Ikuta proposed
a new general method to make a quantitative evaluation of the effectiveness of each
safety strategy [159]. Yamada proposed a human-safety-oriented robot design based
on human pain tolerance [160]. Tejima proposed a new mechanical apparatus for
force limitation [161]. Wakita asserted that information sharing between a user
and a robot would be important for safety [162]. This research is not practical
yet because of the underlying assumptions. Further discussion of this � eld will be
necessary.

4.2. Interfaces

Industrial robots are operated by specialists, while rehabilitation robots are used by
non-specialists with disabilities. A good user-friendly interface is highly desirable
for the acceptance of rehabilitation robots, especially for multipurpose robots.
However, results showed that many of the problems with rehabilitation robots were
still centered in the human interface. Usability should be improved by basic research
and development.
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Various studies on the human interface were proposed. As voice is the most nat-
ural form of communication, speech commands for operation were sometimes pro-
posed [14, 163–165]. Gestures [164, 165], head movements [166– 168], shoulder
movements [169], eye movements [13], electromyography [170] and motor cortex
activities [171] were all tested as control signals. As interface devices, a multiple de-
grees of freedom joystick [172, 173] and a personal computer-based interface, such
as a graphical user interface for task planning, simulation and execution [174, 175],
and an iconic interface [176] were used. Rapid prototyping is a promising method
for adapting rehabilitation robots to user requirements [177–184]. The M3S com-
munication standard for integrated user interfaces [185–187] and a generalized in-
terface that allows a personal computer to control robotic devices [188] are also
important developments. A Model Human Processor for disabled users [189] was
intended to help designers build an image of a system. Modeling human dynam-
ics is necessary for robotic orthoses and robotic therapy [190–192]. These basic
studies will lead to the realization of useful rehabilitation robots.

5. CONCLUSIONS

Trends in rehabilitation robots were reviewed. Key research and development
issues were described. Hundreds of rehabilitation robots have been sold in the
last 10 years. However, it was a negligible quantity compared with the quantity
of users and the quantity of industrial robots. This means that many research,
development and economical issues in rehabilitation robotics remain to be solved.
The collaboration of researchers and a wealth of practical experiences are necessary
to popularize rehabilitation robots.
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